Step |
Hyp |
Ref |
Expression |
1 |
|
caucvg.1 |
|
2 |
|
caurcvg2.2 |
|
3 |
|
caurcvg2.3 |
|
4 |
|
1rp |
|
5 |
4
|
ne0ii |
|
6 |
|
r19.2z |
|
7 |
5 3 6
|
sylancr |
|
8 |
|
simpl |
|
9 |
8
|
ralimi |
|
10 |
|
eqid |
|
11 |
|
simprr |
|
12 |
|
fveq2 |
|
13 |
12
|
eleq1d |
|
14 |
13
|
rspccva |
|
15 |
11 14
|
sylan |
|
16 |
15
|
fmpttd |
|
17 |
|
fveq2 |
|
18 |
|
fveq2 |
|
19 |
18
|
oveq2d |
|
20 |
19
|
fveq2d |
|
21 |
20
|
breq1d |
|
22 |
21
|
anbi2d |
|
23 |
17 22
|
raleqbidv |
|
24 |
23
|
cbvrexvw |
|
25 |
|
fveq2 |
|
26 |
25
|
eleq1d |
|
27 |
25
|
fvoveq1d |
|
28 |
27
|
breq1d |
|
29 |
26 28
|
anbi12d |
|
30 |
29
|
cbvralvw |
|
31 |
|
recn |
|
32 |
31
|
anim1i |
|
33 |
32
|
ralimi |
|
34 |
30 33
|
sylbi |
|
35 |
34
|
reximi |
|
36 |
24 35
|
sylbi |
|
37 |
36
|
ralimi |
|
38 |
3 37
|
syl |
|
39 |
38
|
adantr |
|
40 |
1 10
|
cau4 |
|
41 |
40
|
ad2antrl |
|
42 |
39 41
|
mpbid |
|
43 |
|
simpr |
|
44 |
10
|
uztrn2 |
|
45 |
|
fveq2 |
|
46 |
|
eqid |
|
47 |
|
fvex |
|
48 |
45 46 47
|
fvmpt |
|
49 |
44 48
|
syl |
|
50 |
|
fveq2 |
|
51 |
|
fvex |
|
52 |
50 46 51
|
fvmpt |
|
53 |
52
|
adantr |
|
54 |
49 53
|
oveq12d |
|
55 |
54
|
fveq2d |
|
56 |
55
|
breq1d |
|
57 |
43 56
|
syl5ibr |
|
58 |
57
|
ralimdva |
|
59 |
58
|
reximia |
|
60 |
59
|
ralimi |
|
61 |
42 60
|
syl |
|
62 |
10 16 61
|
caurcvg |
|
63 |
|
eluzelz |
|
64 |
63 1
|
eleq2s |
|
65 |
64
|
ad2antrl |
|
66 |
2
|
adantr |
|
67 |
|
fveq2 |
|
68 |
67
|
cbvmptv |
|
69 |
10 68
|
climmpt |
|
70 |
65 66 69
|
syl2anc |
|
71 |
62 70
|
mpbird |
|
72 |
|
climrel |
|
73 |
72
|
releldmi |
|
74 |
71 73
|
syl |
|
75 |
74
|
expr |
|
76 |
9 75
|
syl5 |
|
77 |
76
|
rexlimdva |
|
78 |
77
|
rexlimdvw |
|
79 |
7 78
|
mpd |
|