Step |
Hyp |
Ref |
Expression |
1 |
|
caufpm |
|
2 |
|
elfvdm |
|
3 |
|
cnex |
|
4 |
|
elpmg |
|
5 |
2 3 4
|
sylancl |
|
6 |
5
|
biimpa |
|
7 |
1 6
|
syldan |
|
8 |
|
rnss |
|
9 |
7 8
|
simpl2im |
|
10 |
|
rnxpss |
|
11 |
9 10
|
sstrdi |
|
12 |
11
|
adantlr |
|
13 |
|
frn |
|
14 |
13
|
ad2antlr |
|
15 |
12 14
|
ssind |
|
16 |
15
|
ex |
|
17 |
|
xmetres |
|
18 |
|
caufpm |
|
19 |
17 18
|
sylan |
|
20 |
|
inex1g |
|
21 |
2 20
|
syl |
|
22 |
|
elpmg |
|
23 |
21 3 22
|
sylancl |
|
24 |
23
|
biimpa |
|
25 |
19 24
|
syldan |
|
26 |
|
rnss |
|
27 |
25 26
|
simpl2im |
|
28 |
|
rnxpss |
|
29 |
27 28
|
sstrdi |
|
30 |
29
|
ex |
|
31 |
30
|
adantr |
|
32 |
|
ffn |
|
33 |
|
df-f |
|
34 |
33
|
simplbi2 |
|
35 |
32 34
|
syl |
|
36 |
|
inss2 |
|
37 |
36
|
a1i |
|
38 |
|
fss |
|
39 |
37 38
|
sylan2 |
|
40 |
39
|
ancoms |
|
41 |
|
ffvelrn |
|
42 |
41
|
adantr |
|
43 |
|
eluznn |
|
44 |
|
ffvelrn |
|
45 |
43 44
|
sylan2 |
|
46 |
45
|
anassrs |
|
47 |
42 46
|
ovresd |
|
48 |
47
|
breq1d |
|
49 |
48
|
ralbidva |
|
50 |
49
|
rexbidva |
|
51 |
50
|
ralbidv |
|
52 |
40 51
|
syl |
|
53 |
|
nnuz |
|
54 |
17
|
adantr |
|
55 |
|
1zzd |
|
56 |
|
eqidd |
|
57 |
|
eqidd |
|
58 |
|
simpr |
|
59 |
53 54 55 56 57 58
|
iscauf |
|
60 |
|
simpl |
|
61 |
|
id |
|
62 |
|
inss1 |
|
63 |
62
|
a1i |
|
64 |
|
fss |
|
65 |
61 63 64
|
syl2anr |
|
66 |
53 60 55 56 57 65
|
iscauf |
|
67 |
52 59 66
|
3bitr4rd |
|
68 |
67
|
ex |
|
69 |
35 68
|
sylan9r |
|
70 |
16 31 69
|
pm5.21ndd |
|