Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
|
2 |
|
cayhamlem1.b |
|
3 |
|
cayhamlem1.p |
|
4 |
|
cayhamlem1.y |
|
5 |
|
cayhamlem1.r |
|
6 |
|
cayhamlem1.s |
|
7 |
|
cayhamlem1.0 |
|
8 |
|
cayhamlem1.t |
|
9 |
|
cayhamlem1.g |
|
10 |
|
cayhamlem1.e |
|
11 |
|
eqid |
|
12 |
1 2 3 4 5 6 7 8 9 10 11
|
chfacfpmmulgsum2 |
|
13 |
|
elfzelz |
|
14 |
13
|
zcnd |
|
15 |
|
pncan1 |
|
16 |
14 15
|
syl |
|
17 |
16
|
eqcomd |
|
18 |
17
|
adantl |
|
19 |
18
|
fveq2d |
|
20 |
19
|
fveq2d |
|
21 |
20
|
oveq2d |
|
22 |
21
|
oveq2d |
|
23 |
22
|
mpteq2dva |
|
24 |
23
|
oveq2d |
|
25 |
24
|
adantr |
|
26 |
|
eqid |
|
27 |
|
crngring |
|
28 |
27
|
anim2i |
|
29 |
28
|
3adant3 |
|
30 |
3 4
|
pmatring |
|
31 |
29 30
|
syl |
|
32 |
|
ringabl |
|
33 |
31 32
|
syl |
|
34 |
33
|
adantr |
|
35 |
|
elnnuz |
|
36 |
35
|
biimpi |
|
37 |
36
|
ad2antrl |
|
38 |
31
|
adantr |
|
39 |
38
|
adantr |
|
40 |
28 30
|
syl |
|
41 |
40
|
3adant3 |
|
42 |
|
eqid |
|
43 |
42
|
ringmgp |
|
44 |
41 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
45
|
adantr |
|
47 |
|
mndmgm |
|
48 |
46 47
|
syl |
|
49 |
|
elfznn |
|
50 |
49
|
adantl |
|
51 |
8 1 2 3 4
|
mat2pmatbas |
|
52 |
27 51
|
syl3an2 |
|
53 |
52
|
adantr |
|
54 |
53
|
adantr |
|
55 |
42 26
|
mgpbas |
|
56 |
55 10
|
mulgnncl |
|
57 |
48 50 54 56
|
syl3anc |
|
58 |
|
simpl1 |
|
59 |
58
|
adantr |
|
60 |
27
|
3ad2ant2 |
|
61 |
60
|
adantr |
|
62 |
61
|
adantr |
|
63 |
|
elmapi |
|
64 |
63
|
adantl |
|
65 |
64
|
adantl |
|
66 |
65
|
adantr |
|
67 |
|
nnz |
|
68 |
|
peano2nn |
|
69 |
68
|
nnzd |
|
70 |
|
elfzm1b |
|
71 |
67 69 70
|
syl2an |
|
72 |
|
nncn |
|
73 |
|
pncan1 |
|
74 |
72 73
|
syl |
|
75 |
74
|
adantl |
|
76 |
75
|
oveq2d |
|
77 |
76
|
eleq2d |
|
78 |
77
|
biimpd |
|
79 |
71 78
|
sylbid |
|
80 |
79
|
expcom |
|
81 |
80
|
com13 |
|
82 |
49 81
|
mpd |
|
83 |
82
|
com12 |
|
84 |
83
|
ad2antrl |
|
85 |
84
|
imp |
|
86 |
66 85
|
ffvelrnd |
|
87 |
8 1 2 3 4
|
mat2pmatbas |
|
88 |
59 62 86 87
|
syl3anc |
|
89 |
26 5
|
ringcl |
|
90 |
39 57 88 89
|
syl3anc |
|
91 |
90
|
ralrimiva |
|
92 |
|
oveq1 |
|
93 |
|
fvoveq1 |
|
94 |
93
|
fveq2d |
|
95 |
92 94
|
oveq12d |
|
96 |
|
oveq1 |
|
97 |
|
fvoveq1 |
|
98 |
97
|
fveq2d |
|
99 |
96 98
|
oveq12d |
|
100 |
|
oveq1 |
|
101 |
|
fvoveq1 |
|
102 |
101
|
fveq2d |
|
103 |
100 102
|
oveq12d |
|
104 |
|
oveq1 |
|
105 |
|
fvoveq1 |
|
106 |
105
|
fveq2d |
|
107 |
104 106
|
oveq12d |
|
108 |
26 34 6 37 91 95 99 103 107
|
telgsumfz |
|
109 |
25 108
|
eqtrd |
|
110 |
109
|
oveq1d |
|
111 |
55 10
|
mulg1 |
|
112 |
52 111
|
syl |
|
113 |
112
|
adantr |
|
114 |
|
1cnd |
|
115 |
114
|
subidd |
|
116 |
115
|
fveq2d |
|
117 |
116
|
fveq2d |
|
118 |
113 117
|
oveq12d |
|
119 |
72
|
ad2antrl |
|
120 |
119 114
|
pncand |
|
121 |
120
|
fveq2d |
|
122 |
121
|
fveq2d |
|
123 |
122
|
oveq2d |
|
124 |
118 123
|
oveq12d |
|
125 |
124
|
oveq1d |
|
126 |
|
ringgrp |
|
127 |
31 126
|
syl |
|
128 |
127
|
adantr |
|
129 |
|
nnnn0 |
|
130 |
|
0elfz |
|
131 |
129 130
|
syl |
|
132 |
131
|
ad2antrl |
|
133 |
65 132
|
ffvelrnd |
|
134 |
8 1 2 3 4
|
mat2pmatbas |
|
135 |
58 61 133 134
|
syl3anc |
|
136 |
26 5
|
ringcl |
|
137 |
38 53 135 136
|
syl3anc |
|
138 |
45 47
|
syl |
|
139 |
|
simprl |
|
140 |
139
|
peano2nnd |
|
141 |
55 10
|
mulgnncl |
|
142 |
138 140 53 141
|
syl3anc |
|
143 |
|
nn0fz0 |
|
144 |
129 143
|
sylib |
|
145 |
144
|
ad2antrl |
|
146 |
65 145
|
ffvelrnd |
|
147 |
8 1 2 3 4
|
mat2pmatbas |
|
148 |
58 61 146 147
|
syl3anc |
|
149 |
26 5
|
ringcl |
|
150 |
38 142 148 149
|
syl3anc |
|
151 |
26 11 6 7
|
grpnpncan0 |
|
152 |
128 137 150 151
|
syl12anc |
|
153 |
125 152
|
eqtrd |
|
154 |
12 110 153
|
3eqtrd |
|