| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayhamlem1.a |
|
| 2 |
|
cayhamlem1.b |
|
| 3 |
|
cayhamlem1.p |
|
| 4 |
|
cayhamlem1.y |
|
| 5 |
|
cayhamlem1.r |
|
| 6 |
|
cayhamlem1.s |
|
| 7 |
|
cayhamlem1.0 |
|
| 8 |
|
cayhamlem1.t |
|
| 9 |
|
cayhamlem1.g |
|
| 10 |
|
cayhamlem1.e |
|
| 11 |
|
eqid |
|
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
chfacfpmmulgsum2 |
|
| 13 |
|
elfzelz |
|
| 14 |
13
|
zcnd |
|
| 15 |
|
pncan1 |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
eqcomd |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
fveq2d |
|
| 20 |
19
|
fveq2d |
|
| 21 |
20
|
oveq2d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
mpteq2dva |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
adantr |
|
| 26 |
|
eqid |
|
| 27 |
|
crngring |
|
| 28 |
27
|
anim2i |
|
| 29 |
28
|
3adant3 |
|
| 30 |
3 4
|
pmatring |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
ringabl |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
adantr |
|
| 35 |
|
elnnuz |
|
| 36 |
35
|
biimpi |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
31
|
adantr |
|
| 39 |
38
|
adantr |
|
| 40 |
28 30
|
syl |
|
| 41 |
40
|
3adant3 |
|
| 42 |
|
eqid |
|
| 43 |
42
|
ringmgp |
|
| 44 |
41 43
|
syl |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
adantr |
|
| 47 |
|
mndmgm |
|
| 48 |
46 47
|
syl |
|
| 49 |
|
elfznn |
|
| 50 |
49
|
adantl |
|
| 51 |
8 1 2 3 4
|
mat2pmatbas |
|
| 52 |
27 51
|
syl3an2 |
|
| 53 |
52
|
adantr |
|
| 54 |
53
|
adantr |
|
| 55 |
42 26
|
mgpbas |
|
| 56 |
55 10
|
mulgnncl |
|
| 57 |
48 50 54 56
|
syl3anc |
|
| 58 |
|
simpl1 |
|
| 59 |
58
|
adantr |
|
| 60 |
27
|
3ad2ant2 |
|
| 61 |
60
|
adantr |
|
| 62 |
61
|
adantr |
|
| 63 |
|
elmapi |
|
| 64 |
63
|
adantl |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
adantr |
|
| 67 |
|
nnz |
|
| 68 |
|
peano2nn |
|
| 69 |
68
|
nnzd |
|
| 70 |
|
elfzm1b |
|
| 71 |
67 69 70
|
syl2an |
|
| 72 |
|
nncn |
|
| 73 |
|
pncan1 |
|
| 74 |
72 73
|
syl |
|
| 75 |
74
|
adantl |
|
| 76 |
75
|
oveq2d |
|
| 77 |
76
|
eleq2d |
|
| 78 |
77
|
biimpd |
|
| 79 |
71 78
|
sylbid |
|
| 80 |
79
|
expcom |
|
| 81 |
80
|
com13 |
|
| 82 |
49 81
|
mpd |
|
| 83 |
82
|
com12 |
|
| 84 |
83
|
ad2antrl |
|
| 85 |
84
|
imp |
|
| 86 |
66 85
|
ffvelcdmd |
|
| 87 |
8 1 2 3 4
|
mat2pmatbas |
|
| 88 |
59 62 86 87
|
syl3anc |
|
| 89 |
26 5
|
ringcl |
|
| 90 |
39 57 88 89
|
syl3anc |
|
| 91 |
90
|
ralrimiva |
|
| 92 |
|
oveq1 |
|
| 93 |
|
fvoveq1 |
|
| 94 |
93
|
fveq2d |
|
| 95 |
92 94
|
oveq12d |
|
| 96 |
|
oveq1 |
|
| 97 |
|
fvoveq1 |
|
| 98 |
97
|
fveq2d |
|
| 99 |
96 98
|
oveq12d |
|
| 100 |
|
oveq1 |
|
| 101 |
|
fvoveq1 |
|
| 102 |
101
|
fveq2d |
|
| 103 |
100 102
|
oveq12d |
|
| 104 |
|
oveq1 |
|
| 105 |
|
fvoveq1 |
|
| 106 |
105
|
fveq2d |
|
| 107 |
104 106
|
oveq12d |
|
| 108 |
26 34 6 37 91 95 99 103 107
|
telgsumfz |
|
| 109 |
25 108
|
eqtrd |
|
| 110 |
109
|
oveq1d |
|
| 111 |
55 10
|
mulg1 |
|
| 112 |
52 111
|
syl |
|
| 113 |
112
|
adantr |
|
| 114 |
|
1cnd |
|
| 115 |
114
|
subidd |
|
| 116 |
115
|
fveq2d |
|
| 117 |
116
|
fveq2d |
|
| 118 |
113 117
|
oveq12d |
|
| 119 |
72
|
ad2antrl |
|
| 120 |
119 114
|
pncand |
|
| 121 |
120
|
fveq2d |
|
| 122 |
121
|
fveq2d |
|
| 123 |
122
|
oveq2d |
|
| 124 |
118 123
|
oveq12d |
|
| 125 |
124
|
oveq1d |
|
| 126 |
|
ringgrp |
|
| 127 |
31 126
|
syl |
|
| 128 |
127
|
adantr |
|
| 129 |
|
nnnn0 |
|
| 130 |
|
0elfz |
|
| 131 |
129 130
|
syl |
|
| 132 |
131
|
ad2antrl |
|
| 133 |
65 132
|
ffvelcdmd |
|
| 134 |
8 1 2 3 4
|
mat2pmatbas |
|
| 135 |
58 61 133 134
|
syl3anc |
|
| 136 |
26 5
|
ringcl |
|
| 137 |
38 53 135 136
|
syl3anc |
|
| 138 |
45 47
|
syl |
|
| 139 |
|
simprl |
|
| 140 |
139
|
peano2nnd |
|
| 141 |
55 10
|
mulgnncl |
|
| 142 |
138 140 53 141
|
syl3anc |
|
| 143 |
|
nn0fz0 |
|
| 144 |
129 143
|
sylib |
|
| 145 |
144
|
ad2antrl |
|
| 146 |
65 145
|
ffvelcdmd |
|
| 147 |
8 1 2 3 4
|
mat2pmatbas |
|
| 148 |
58 61 146 147
|
syl3anc |
|
| 149 |
26 5
|
ringcl |
|
| 150 |
38 142 148 149
|
syl3anc |
|
| 151 |
26 11 6 7
|
grpnpncan0 |
|
| 152 |
128 137 150 151
|
syl12anc |
|
| 153 |
125 152
|
eqtrd |
|
| 154 |
12 110 153
|
3eqtrd |
|