Metamath Proof Explorer


Theorem cayhamlem2

Description: Lemma for cayhamlem3 . (Contributed by AV, 24-Nov-2019)

Ref Expression
Hypotheses cayhamlem2.k K = Base R
cayhamlem2.a A = N Mat R
cayhamlem2.b B = Base A
cayhamlem2.1 1 ˙ = 1 A
cayhamlem2.m ˙ = A
cayhamlem2.e × ˙ = mulGrp A
cayhamlem2.r · ˙ = A
Assertion cayhamlem2 N Fin R CRing M B H K 0 L 0 H L ˙ L × ˙ M = L × ˙ M · ˙ H L ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 cayhamlem2.k K = Base R
2 cayhamlem2.a A = N Mat R
3 cayhamlem2.b B = Base A
4 cayhamlem2.1 1 ˙ = 1 A
5 cayhamlem2.m ˙ = A
6 cayhamlem2.e × ˙ = mulGrp A
7 cayhamlem2.r · ˙ = A
8 elmapi H K 0 H : 0 K
9 8 ffvelrnda H K 0 L 0 H L K
10 9 adantl N Fin R CRing M B H K 0 L 0 H L K
11 2 matsca2 N Fin R CRing R = Scalar A
12 11 3adant3 N Fin R CRing M B R = Scalar A
13 12 fveq2d N Fin R CRing M B Base R = Base Scalar A
14 1 13 eqtr2id N Fin R CRing M B Base Scalar A = K
15 14 eleq2d N Fin R CRing M B H L Base Scalar A H L K
16 15 adantr N Fin R CRing M B H K 0 L 0 H L Base Scalar A H L K
17 10 16 mpbird N Fin R CRing M B H K 0 L 0 H L Base Scalar A
18 eqid algSc A = algSc A
19 eqid Scalar A = Scalar A
20 eqid Base Scalar A = Base Scalar A
21 18 19 20 5 4 asclval H L Base Scalar A algSc A H L = H L ˙ 1 ˙
22 17 21 syl N Fin R CRing M B H K 0 L 0 algSc A H L = H L ˙ 1 ˙
23 22 eqcomd N Fin R CRing M B H K 0 L 0 H L ˙ 1 ˙ = algSc A H L
24 23 oveq2d N Fin R CRing M B H K 0 L 0 L × ˙ M · ˙ H L ˙ 1 ˙ = L × ˙ M · ˙ algSc A H L
25 2 matassa N Fin R CRing A AssAlg
26 25 3adant3 N Fin R CRing M B A AssAlg
27 26 adantr N Fin R CRing M B H K 0 L 0 A AssAlg
28 crngring R CRing R Ring
29 28 anim2i N Fin R CRing N Fin R Ring
30 29 3adant3 N Fin R CRing M B N Fin R Ring
31 2 matring N Fin R Ring A Ring
32 eqid mulGrp A = mulGrp A
33 32 ringmgp A Ring mulGrp A Mnd
34 30 31 33 3syl N Fin R CRing M B mulGrp A Mnd
35 34 adantr N Fin R CRing M B H K 0 L 0 mulGrp A Mnd
36 simprr N Fin R CRing M B H K 0 L 0 L 0
37 simpl3 N Fin R CRing M B H K 0 L 0 M B
38 32 3 mgpbas B = Base mulGrp A
39 38 6 mulgnn0cl mulGrp A Mnd L 0 M B L × ˙ M B
40 35 36 37 39 syl3anc N Fin R CRing M B H K 0 L 0 L × ˙ M B
41 18 19 20 3 7 5 asclmul2 A AssAlg H L Base Scalar A L × ˙ M B L × ˙ M · ˙ algSc A H L = H L ˙ L × ˙ M
42 27 17 40 41 syl3anc N Fin R CRing M B H K 0 L 0 L × ˙ M · ˙ algSc A H L = H L ˙ L × ˙ M
43 24 42 eqtr2d N Fin R CRing M B H K 0 L 0 H L ˙ L × ˙ M = L × ˙ M · ˙ H L ˙ 1 ˙