| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chcoeffeq.a |
|
| 2 |
|
chcoeffeq.b |
|
| 3 |
|
chcoeffeq.p |
|
| 4 |
|
chcoeffeq.y |
|
| 5 |
|
chcoeffeq.r |
|
| 6 |
|
chcoeffeq.s |
|
| 7 |
|
chcoeffeq.0 |
|
| 8 |
|
chcoeffeq.t |
|
| 9 |
|
chcoeffeq.c |
|
| 10 |
|
chcoeffeq.k |
|
| 11 |
|
chcoeffeq.g |
|
| 12 |
|
chcoeffeq.w |
|
| 13 |
|
chcoeffeq.1 |
|
| 14 |
|
chcoeffeq.m |
|
| 15 |
|
chcoeffeq.u |
|
| 16 |
|
cayhamlem.e1 |
|
| 17 |
|
cayhamlem.r |
|
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
chcoeffeq |
|
| 19 |
|
2fveq3 |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
oveq1d |
|
| 22 |
19 21
|
eqeq12d |
|
| 23 |
22
|
cbvralvw |
|
| 24 |
|
2fveq3 |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
oveq1d |
|
| 27 |
24 26
|
eqeq12d |
|
| 28 |
27
|
rspccva |
|
| 29 |
|
simprll |
|
| 30 |
|
eqid |
|
| 31 |
9 1 2 3 30
|
chpmatply1 |
|
| 32 |
29 31
|
syl |
|
| 33 |
10 32
|
eqeltrid |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
34 30 3 35
|
coe1f |
|
| 37 |
33 36
|
syl |
|
| 38 |
|
fvex |
|
| 39 |
|
nn0ex |
|
| 40 |
38 39
|
pm3.2i |
|
| 41 |
|
elmapg |
|
| 42 |
40 41
|
mp1i |
|
| 43 |
37 42
|
mpbird |
|
| 44 |
|
simpl |
|
| 45 |
35 1 2 13 14 16 17
|
cayhamlem2 |
|
| 46 |
29 43 44 45
|
syl12anc |
|
| 47 |
46
|
adantl |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
adantr |
|
| 50 |
47 49
|
eqtr4d |
|
| 51 |
50
|
exp32 |
|
| 52 |
51
|
com12 |
|
| 53 |
52
|
adantl |
|
| 54 |
28 53
|
mpd |
|
| 55 |
54
|
com12 |
|
| 56 |
55
|
impl |
|
| 57 |
56
|
mpteq2dva |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
ex |
|
| 60 |
23 59
|
biimtrid |
|
| 61 |
60
|
reximdva |
|
| 62 |
61
|
reximdva |
|
| 63 |
18 62
|
mpd |
|