Metamath Proof Explorer


Theorem cayhamlem4

Description: Lemma for cayleyhamilton . (Contributed by AV, 25-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A = N Mat R
chcoeffeq.b B = Base A
chcoeffeq.p P = Poly 1 R
chcoeffeq.y Y = N Mat P
chcoeffeq.r × ˙ = Y
chcoeffeq.s - ˙ = - Y
chcoeffeq.0 0 ˙ = 0 Y
chcoeffeq.t T = N matToPolyMat R
chcoeffeq.c C = N CharPlyMat R
chcoeffeq.k K = C M
chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chcoeffeq.w W = Base Y
chcoeffeq.1 1 ˙ = 1 A
chcoeffeq.m ˙ = A
chcoeffeq.u U = N cPolyMatToMat R
cayhamlem.e1 × ˙ = mulGrp A
cayhamlem.e2 E = mulGrp Y
Assertion cayhamlem4 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = U Y n 0 n E T M × ˙ G n

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A = N Mat R
2 chcoeffeq.b B = Base A
3 chcoeffeq.p P = Poly 1 R
4 chcoeffeq.y Y = N Mat P
5 chcoeffeq.r × ˙ = Y
6 chcoeffeq.s - ˙ = - Y
7 chcoeffeq.0 0 ˙ = 0 Y
8 chcoeffeq.t T = N matToPolyMat R
9 chcoeffeq.c C = N CharPlyMat R
10 chcoeffeq.k K = C M
11 chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
12 chcoeffeq.w W = Base Y
13 chcoeffeq.1 1 ˙ = 1 A
14 chcoeffeq.m ˙ = A
15 chcoeffeq.u U = N cPolyMatToMat R
16 cayhamlem.e1 × ˙ = mulGrp A
17 cayhamlem.e2 E = mulGrp Y
18 id A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n
19 simp1 N Fin R CRing M B N Fin
20 19 ad2antrr N Fin R CRing M B s b B 0 s N Fin
21 crngring R CRing R Ring
22 21 3ad2ant2 N Fin R CRing M B R Ring
23 22 ad2antrr N Fin R CRing M B s b B 0 s R Ring
24 eqid 0 A = 0 A
25 1 matring N Fin R Ring A Ring
26 21 25 sylan2 N Fin R CRing A Ring
27 ringcmn A Ring A CMnd
28 26 27 syl N Fin R CRing A CMnd
29 28 3adant3 N Fin R CRing M B A CMnd
30 29 ad2antrr N Fin R CRing M B s b B 0 s A CMnd
31 nn0ex 0 V
32 31 a1i N Fin R CRing M B s b B 0 s 0 V
33 20 23 25 syl2anc N Fin R CRing M B s b B 0 s A Ring
34 33 adantr N Fin R CRing M B s b B 0 s n 0 A Ring
35 eqid mulGrp A = mulGrp A
36 35 2 mgpbas B = Base mulGrp A
37 19 22 25 syl2anc N Fin R CRing M B A Ring
38 35 ringmgp A Ring mulGrp A Mnd
39 37 38 syl N Fin R CRing M B mulGrp A Mnd
40 39 ad3antrrr N Fin R CRing M B s b B 0 s n 0 mulGrp A Mnd
41 simpr N Fin R CRing M B s b B 0 s n 0 n 0
42 simpll3 N Fin R CRing M B s b B 0 s M B
43 42 adantr N Fin R CRing M B s b B 0 s n 0 M B
44 36 16 40 41 43 mulgnn0cld N Fin R CRing M B s b B 0 s n 0 n × ˙ M B
45 eqid N ConstPolyMat R = N ConstPolyMat R
46 1 2 45 15 cpm2mf N Fin R Ring U : N ConstPolyMat R B
47 19 22 46 syl2anc N Fin R CRing M B U : N ConstPolyMat R B
48 47 ad3antrrr N Fin R CRing M B s b B 0 s n 0 U : N ConstPolyMat R B
49 simplr N Fin R CRing M B s b B 0 s s
50 simpr N Fin R CRing M B s b B 0 s b B 0 s
51 1 2 3 4 5 6 7 8 11 45 chfacfisfcpmat N Fin R Ring M B s b B 0 s G : 0 N ConstPolyMat R
52 20 23 42 49 50 51 syl32anc N Fin R CRing M B s b B 0 s G : 0 N ConstPolyMat R
53 52 ffvelcdmda N Fin R CRing M B s b B 0 s n 0 G n N ConstPolyMat R
54 48 53 ffvelcdmd N Fin R CRing M B s b B 0 s n 0 U G n B
55 eqid A = A
56 2 55 ringcl A Ring n × ˙ M B U G n B n × ˙ M A U G n B
57 34 44 54 56 syl3anc N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n B
58 57 fmpttd N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n : 0 B
59 fvexd N Fin R CRing M B s b B 0 s 0 A V
60 ovexd N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n V
61 1 2 3 4 5 6 7 8 11 chfacffsupp N Fin R CRing M B s b B 0 s finSupp 0 Y G
62 61 anassrs N Fin R CRing M B s b B 0 s finSupp 0 Y G
63 ovex N ConstPolyMat R V
64 63 31 pm3.2i N ConstPolyMat R V 0 V
65 elmapg N ConstPolyMat R V 0 V G N ConstPolyMat R 0 G : 0 N ConstPolyMat R
66 64 65 mp1i N Fin R CRing M B s b B 0 s G N ConstPolyMat R 0 G : 0 N ConstPolyMat R
67 52 66 mpbird N Fin R CRing M B s b B 0 s G N ConstPolyMat R 0
68 fvex 0 Y V
69 fsuppmapnn0ub G N ConstPolyMat R 0 0 Y V finSupp 0 Y G w 0 z 0 w < z G z = 0 Y
70 67 68 69 sylancl N Fin R CRing M B s b B 0 s finSupp 0 Y G w 0 z 0 w < z G z = 0 Y
71 csbov12g z 0 z / n n × ˙ M A U G n = z / n n × ˙ M A z / n U G n
72 csbov1g z 0 z / n n × ˙ M = z / n n × ˙ M
73 csbvarg z 0 z / n n = z
74 73 oveq1d z 0 z / n n × ˙ M = z × ˙ M
75 72 74 eqtrd z 0 z / n n × ˙ M = z × ˙ M
76 csbfv2g z 0 z / n U G n = U z / n G n
77 csbfv z / n G n = G z
78 77 a1i z 0 z / n G n = G z
79 78 fveq2d z 0 U z / n G n = U G z
80 76 79 eqtrd z 0 z / n U G n = U G z
81 75 80 oveq12d z 0 z / n n × ˙ M A z / n U G n = z × ˙ M A U G z
82 71 81 eqtrd z 0 z / n n × ˙ M A U G n = z × ˙ M A U G z
83 82 ad2antlr N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z / n n × ˙ M A U G n = z × ˙ M A U G z
84 fveq2 G z = 0 Y U G z = U 0 Y
85 19 22 jca N Fin R CRing M B N Fin R Ring
86 85 adantr N Fin R CRing M B s N Fin R Ring
87 eqid 0 Y = 0 Y
88 1 15 3 4 24 87 m2cpminv0 N Fin R Ring U 0 Y = 0 A
89 86 88 syl N Fin R CRing M B s U 0 Y = 0 A
90 89 ad2antrr N Fin R CRing M B s b B 0 s z 0 U 0 Y = 0 A
91 84 90 sylan9eqr N Fin R CRing M B s b B 0 s z 0 G z = 0 Y U G z = 0 A
92 91 oveq2d N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z × ˙ M A U G z = z × ˙ M A 0 A
93 33 adantr N Fin R CRing M B s b B 0 s z 0 A Ring
94 39 ad3antrrr N Fin R CRing M B s b B 0 s z 0 mulGrp A Mnd
95 simpr N Fin R CRing M B s b B 0 s z 0 z 0
96 42 adantr N Fin R CRing M B s b B 0 s z 0 M B
97 36 16 94 95 96 mulgnn0cld N Fin R CRing M B s b B 0 s z 0 z × ˙ M B
98 93 97 jca N Fin R CRing M B s b B 0 s z 0 A Ring z × ˙ M B
99 98 adantr N Fin R CRing M B s b B 0 s z 0 G z = 0 Y A Ring z × ˙ M B
100 2 55 24 ringrz A Ring z × ˙ M B z × ˙ M A 0 A = 0 A
101 99 100 syl N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z × ˙ M A 0 A = 0 A
102 83 92 101 3eqtrd N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z / n n × ˙ M A U G n = 0 A
103 102 ex N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z / n n × ˙ M A U G n = 0 A
104 103 adantlr N Fin R CRing M B s b B 0 s w 0 z 0 G z = 0 Y z / n n × ˙ M A U G n = 0 A
105 104 imim2d N Fin R CRing M B s b B 0 s w 0 z 0 w < z G z = 0 Y w < z z / n n × ˙ M A U G n = 0 A
106 105 ralimdva N Fin R CRing M B s b B 0 s w 0 z 0 w < z G z = 0 Y z 0 w < z z / n n × ˙ M A U G n = 0 A
107 106 reximdva N Fin R CRing M B s b B 0 s w 0 z 0 w < z G z = 0 Y w 0 z 0 w < z z / n n × ˙ M A U G n = 0 A
108 70 107 syld N Fin R CRing M B s b B 0 s finSupp 0 Y G w 0 z 0 w < z z / n n × ˙ M A U G n = 0 A
109 62 108 mpd N Fin R CRing M B s b B 0 s w 0 z 0 w < z z / n n × ˙ M A U G n = 0 A
110 59 60 109 mptnn0fsupp N Fin R CRing M B s b B 0 s finSupp 0 A n 0 n × ˙ M A U G n
111 2 24 30 32 58 110 gsumcl N Fin R CRing M B s b B 0 s A n 0 n × ˙ M A U G n B
112 15 1 2 8 m2cpminvid N Fin R Ring A n 0 n × ˙ M A U G n B U T A n 0 n × ˙ M A U G n = A n 0 n × ˙ M A U G n
113 20 23 111 112 syl3anc N Fin R CRing M B s b B 0 s U T A n 0 n × ˙ M A U G n = A n 0 n × ˙ M A U G n
114 3 4 pmatring N Fin R Ring Y Ring
115 19 22 114 syl2anc N Fin R CRing M B Y Ring
116 ringmnd Y Ring Y Mnd
117 115 116 syl N Fin R CRing M B Y Mnd
118 117 ad2antrr N Fin R CRing M B s b B 0 s Y Mnd
119 8 1 2 3 4 12 mat2pmatghm N Fin R Ring T A GrpHom Y
120 20 23 119 syl2anc N Fin R CRing M B s b B 0 s T A GrpHom Y
121 ghmmhm T A GrpHom Y T A MndHom Y
122 120 121 syl N Fin R CRing M B s b B 0 s T A MndHom Y
123 37 ad3antrrr N Fin R CRing M B s b B 0 s n 0 A Ring
124 21 46 sylan2 N Fin R CRing U : N ConstPolyMat R B
125 124 3adant3 N Fin R CRing M B U : N ConstPolyMat R B
126 125 ad3antrrr N Fin R CRing M B s b B 0 s n 0 U : N ConstPolyMat R B
127 126 53 ffvelcdmd N Fin R CRing M B s b B 0 s n 0 U G n B
128 123 44 127 56 syl3anc N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n B
129 2 24 30 118 32 122 128 110 gsummptmhm N Fin R CRing M B s b B 0 s Y n 0 T n × ˙ M A U G n = T A n 0 n × ˙ M A U G n
130 8 1 2 3 4 12 mat2pmatrhm N Fin R CRing T A RingHom Y
131 130 3adant3 N Fin R CRing M B T A RingHom Y
132 131 ad3antrrr N Fin R CRing M B s b B 0 s n 0 T A RingHom Y
133 2 55 5 rhmmul T A RingHom Y n × ˙ M B U G n B T n × ˙ M A U G n = T n × ˙ M × ˙ T U G n
134 132 44 127 133 syl3anc N Fin R CRing M B s b B 0 s n 0 T n × ˙ M A U G n = T n × ˙ M × ˙ T U G n
135 8 1 2 3 4 12 mat2pmatmhm N Fin R CRing T mulGrp A MndHom mulGrp Y
136 135 3adant3 N Fin R CRing M B T mulGrp A MndHom mulGrp Y
137 136 ad3antrrr N Fin R CRing M B s b B 0 s n 0 T mulGrp A MndHom mulGrp Y
138 36 16 17 mhmmulg T mulGrp A MndHom mulGrp Y n 0 M B T n × ˙ M = n E T M
139 137 41 43 138 syl3anc N Fin R CRing M B s b B 0 s n 0 T n × ˙ M = n E T M
140 19 ad3antrrr N Fin R CRing M B s b B 0 s n 0 N Fin
141 22 ad3antrrr N Fin R CRing M B s b B 0 s n 0 R Ring
142 45 15 8 m2cpminvid2 N Fin R Ring G n N ConstPolyMat R T U G n = G n
143 140 141 53 142 syl3anc N Fin R CRing M B s b B 0 s n 0 T U G n = G n
144 139 143 oveq12d N Fin R CRing M B s b B 0 s n 0 T n × ˙ M × ˙ T U G n = n E T M × ˙ G n
145 134 144 eqtrd N Fin R CRing M B s b B 0 s n 0 T n × ˙ M A U G n = n E T M × ˙ G n
146 145 mpteq2dva N Fin R CRing M B s b B 0 s n 0 T n × ˙ M A U G n = n 0 n E T M × ˙ G n
147 146 oveq2d N Fin R CRing M B s b B 0 s Y n 0 T n × ˙ M A U G n = Y n 0 n E T M × ˙ G n
148 129 147 eqtr3d N Fin R CRing M B s b B 0 s T A n 0 n × ˙ M A U G n = Y n 0 n E T M × ˙ G n
149 148 fveq2d N Fin R CRing M B s b B 0 s U T A n 0 n × ˙ M A U G n = U Y n 0 n E T M × ˙ G n
150 113 149 eqtr3d N Fin R CRing M B s b B 0 s A n 0 n × ˙ M A U G n = U Y n 0 n E T M × ˙ G n
151 18 150 sylan9eqr N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n A n 0 coe 1 K n ˙ n × ˙ M = U Y n 0 n E T M × ˙ G n
152 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 55 cayhamlem3 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n
153 151 152 reximddv2 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = U Y n 0 n E T M × ˙ G n