Metamath Proof Explorer


Theorem cayhamlem4

Description: Lemma for cayleyhamilton . (Contributed by AV, 25-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A = N Mat R
chcoeffeq.b B = Base A
chcoeffeq.p P = Poly 1 R
chcoeffeq.y Y = N Mat P
chcoeffeq.r × ˙ = Y
chcoeffeq.s - ˙ = - Y
chcoeffeq.0 0 ˙ = 0 Y
chcoeffeq.t T = N matToPolyMat R
chcoeffeq.c C = N CharPlyMat R
chcoeffeq.k K = C M
chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chcoeffeq.w W = Base Y
chcoeffeq.1 1 ˙ = 1 A
chcoeffeq.m ˙ = A
chcoeffeq.u U = N cPolyMatToMat R
cayhamlem.e1 × ˙ = mulGrp A
cayhamlem.e2 E = mulGrp Y
Assertion cayhamlem4 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = U Y n 0 n E T M × ˙ G n

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A = N Mat R
2 chcoeffeq.b B = Base A
3 chcoeffeq.p P = Poly 1 R
4 chcoeffeq.y Y = N Mat P
5 chcoeffeq.r × ˙ = Y
6 chcoeffeq.s - ˙ = - Y
7 chcoeffeq.0 0 ˙ = 0 Y
8 chcoeffeq.t T = N matToPolyMat R
9 chcoeffeq.c C = N CharPlyMat R
10 chcoeffeq.k K = C M
11 chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
12 chcoeffeq.w W = Base Y
13 chcoeffeq.1 1 ˙ = 1 A
14 chcoeffeq.m ˙ = A
15 chcoeffeq.u U = N cPolyMatToMat R
16 cayhamlem.e1 × ˙ = mulGrp A
17 cayhamlem.e2 E = mulGrp Y
18 id A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n
19 simp1 N Fin R CRing M B N Fin
20 19 ad2antrr N Fin R CRing M B s b B 0 s N Fin
21 crngring R CRing R Ring
22 21 3ad2ant2 N Fin R CRing M B R Ring
23 22 ad2antrr N Fin R CRing M B s b B 0 s R Ring
24 eqid 0 A = 0 A
25 1 matring N Fin R Ring A Ring
26 21 25 sylan2 N Fin R CRing A Ring
27 ringcmn A Ring A CMnd
28 26 27 syl N Fin R CRing A CMnd
29 28 3adant3 N Fin R CRing M B A CMnd
30 29 ad2antrr N Fin R CRing M B s b B 0 s A CMnd
31 nn0ex 0 V
32 31 a1i N Fin R CRing M B s b B 0 s 0 V
33 20 23 25 syl2anc N Fin R CRing M B s b B 0 s A Ring
34 33 adantr N Fin R CRing M B s b B 0 s n 0 A Ring
35 19 22 25 syl2anc N Fin R CRing M B A Ring
36 eqid mulGrp A = mulGrp A
37 36 ringmgp A Ring mulGrp A Mnd
38 35 37 syl N Fin R CRing M B mulGrp A Mnd
39 38 ad3antrrr N Fin R CRing M B s b B 0 s n 0 mulGrp A Mnd
40 simpr N Fin R CRing M B s b B 0 s n 0 n 0
41 simpll3 N Fin R CRing M B s b B 0 s M B
42 41 adantr N Fin R CRing M B s b B 0 s n 0 M B
43 36 2 mgpbas B = Base mulGrp A
44 43 16 mulgnn0cl mulGrp A Mnd n 0 M B n × ˙ M B
45 39 40 42 44 syl3anc N Fin R CRing M B s b B 0 s n 0 n × ˙ M B
46 eqid N ConstPolyMat R = N ConstPolyMat R
47 1 2 46 15 cpm2mf N Fin R Ring U : N ConstPolyMat R B
48 19 22 47 syl2anc N Fin R CRing M B U : N ConstPolyMat R B
49 48 ad3antrrr N Fin R CRing M B s b B 0 s n 0 U : N ConstPolyMat R B
50 simplr N Fin R CRing M B s b B 0 s s
51 simpr N Fin R CRing M B s b B 0 s b B 0 s
52 1 2 3 4 5 6 7 8 11 46 chfacfisfcpmat N Fin R Ring M B s b B 0 s G : 0 N ConstPolyMat R
53 20 23 41 50 51 52 syl32anc N Fin R CRing M B s b B 0 s G : 0 N ConstPolyMat R
54 53 ffvelrnda N Fin R CRing M B s b B 0 s n 0 G n N ConstPolyMat R
55 49 54 ffvelrnd N Fin R CRing M B s b B 0 s n 0 U G n B
56 eqid A = A
57 2 56 ringcl A Ring n × ˙ M B U G n B n × ˙ M A U G n B
58 34 45 55 57 syl3anc N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n B
59 58 fmpttd N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n : 0 B
60 fvexd N Fin R CRing M B s b B 0 s 0 A V
61 ovexd N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n V
62 1 2 3 4 5 6 7 8 11 chfacffsupp N Fin R CRing M B s b B 0 s finSupp 0 Y G
63 62 anassrs N Fin R CRing M B s b B 0 s finSupp 0 Y G
64 ovex N ConstPolyMat R V
65 64 31 pm3.2i N ConstPolyMat R V 0 V
66 elmapg N ConstPolyMat R V 0 V G N ConstPolyMat R 0 G : 0 N ConstPolyMat R
67 65 66 mp1i N Fin R CRing M B s b B 0 s G N ConstPolyMat R 0 G : 0 N ConstPolyMat R
68 53 67 mpbird N Fin R CRing M B s b B 0 s G N ConstPolyMat R 0
69 fvex 0 Y V
70 fsuppmapnn0ub G N ConstPolyMat R 0 0 Y V finSupp 0 Y G w 0 z 0 w < z G z = 0 Y
71 68 69 70 sylancl N Fin R CRing M B s b B 0 s finSupp 0 Y G w 0 z 0 w < z G z = 0 Y
72 csbov12g z 0 z / n n × ˙ M A U G n = z / n n × ˙ M A z / n U G n
73 csbov1g z 0 z / n n × ˙ M = z / n n × ˙ M
74 csbvarg z 0 z / n n = z
75 74 oveq1d z 0 z / n n × ˙ M = z × ˙ M
76 73 75 eqtrd z 0 z / n n × ˙ M = z × ˙ M
77 csbfv2g z 0 z / n U G n = U z / n G n
78 csbfv z / n G n = G z
79 78 a1i z 0 z / n G n = G z
80 79 fveq2d z 0 U z / n G n = U G z
81 77 80 eqtrd z 0 z / n U G n = U G z
82 76 81 oveq12d z 0 z / n n × ˙ M A z / n U G n = z × ˙ M A U G z
83 72 82 eqtrd z 0 z / n n × ˙ M A U G n = z × ˙ M A U G z
84 83 ad2antlr N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z / n n × ˙ M A U G n = z × ˙ M A U G z
85 fveq2 G z = 0 Y U G z = U 0 Y
86 19 22 jca N Fin R CRing M B N Fin R Ring
87 86 adantr N Fin R CRing M B s N Fin R Ring
88 eqid 0 Y = 0 Y
89 1 15 3 4 24 88 m2cpminv0 N Fin R Ring U 0 Y = 0 A
90 87 89 syl N Fin R CRing M B s U 0 Y = 0 A
91 90 ad2antrr N Fin R CRing M B s b B 0 s z 0 U 0 Y = 0 A
92 85 91 sylan9eqr N Fin R CRing M B s b B 0 s z 0 G z = 0 Y U G z = 0 A
93 92 oveq2d N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z × ˙ M A U G z = z × ˙ M A 0 A
94 33 adantr N Fin R CRing M B s b B 0 s z 0 A Ring
95 38 ad3antrrr N Fin R CRing M B s b B 0 s z 0 mulGrp A Mnd
96 simpr N Fin R CRing M B s b B 0 s z 0 z 0
97 41 adantr N Fin R CRing M B s b B 0 s z 0 M B
98 43 16 mulgnn0cl mulGrp A Mnd z 0 M B z × ˙ M B
99 95 96 97 98 syl3anc N Fin R CRing M B s b B 0 s z 0 z × ˙ M B
100 94 99 jca N Fin R CRing M B s b B 0 s z 0 A Ring z × ˙ M B
101 100 adantr N Fin R CRing M B s b B 0 s z 0 G z = 0 Y A Ring z × ˙ M B
102 2 56 24 ringrz A Ring z × ˙ M B z × ˙ M A 0 A = 0 A
103 101 102 syl N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z × ˙ M A 0 A = 0 A
104 84 93 103 3eqtrd N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z / n n × ˙ M A U G n = 0 A
105 104 ex N Fin R CRing M B s b B 0 s z 0 G z = 0 Y z / n n × ˙ M A U G n = 0 A
106 105 adantlr N Fin R CRing M B s b B 0 s w 0 z 0 G z = 0 Y z / n n × ˙ M A U G n = 0 A
107 106 imim2d N Fin R CRing M B s b B 0 s w 0 z 0 w < z G z = 0 Y w < z z / n n × ˙ M A U G n = 0 A
108 107 ralimdva N Fin R CRing M B s b B 0 s w 0 z 0 w < z G z = 0 Y z 0 w < z z / n n × ˙ M A U G n = 0 A
109 108 reximdva N Fin R CRing M B s b B 0 s w 0 z 0 w < z G z = 0 Y w 0 z 0 w < z z / n n × ˙ M A U G n = 0 A
110 71 109 syld N Fin R CRing M B s b B 0 s finSupp 0 Y G w 0 z 0 w < z z / n n × ˙ M A U G n = 0 A
111 63 110 mpd N Fin R CRing M B s b B 0 s w 0 z 0 w < z z / n n × ˙ M A U G n = 0 A
112 60 61 111 mptnn0fsupp N Fin R CRing M B s b B 0 s finSupp 0 A n 0 n × ˙ M A U G n
113 2 24 30 32 59 112 gsumcl N Fin R CRing M B s b B 0 s A n 0 n × ˙ M A U G n B
114 15 1 2 8 m2cpminvid N Fin R Ring A n 0 n × ˙ M A U G n B U T A n 0 n × ˙ M A U G n = A n 0 n × ˙ M A U G n
115 20 23 113 114 syl3anc N Fin R CRing M B s b B 0 s U T A n 0 n × ˙ M A U G n = A n 0 n × ˙ M A U G n
116 3 4 pmatring N Fin R Ring Y Ring
117 19 22 116 syl2anc N Fin R CRing M B Y Ring
118 ringmnd Y Ring Y Mnd
119 117 118 syl N Fin R CRing M B Y Mnd
120 119 ad2antrr N Fin R CRing M B s b B 0 s Y Mnd
121 8 1 2 3 4 12 mat2pmatghm N Fin R Ring T A GrpHom Y
122 20 23 121 syl2anc N Fin R CRing M B s b B 0 s T A GrpHom Y
123 ghmmhm T A GrpHom Y T A MndHom Y
124 122 123 syl N Fin R CRing M B s b B 0 s T A MndHom Y
125 35 ad3antrrr N Fin R CRing M B s b B 0 s n 0 A Ring
126 21 47 sylan2 N Fin R CRing U : N ConstPolyMat R B
127 126 3adant3 N Fin R CRing M B U : N ConstPolyMat R B
128 127 ad3antrrr N Fin R CRing M B s b B 0 s n 0 U : N ConstPolyMat R B
129 128 54 ffvelrnd N Fin R CRing M B s b B 0 s n 0 U G n B
130 125 45 129 57 syl3anc N Fin R CRing M B s b B 0 s n 0 n × ˙ M A U G n B
131 2 24 30 120 32 124 130 112 gsummptmhm N Fin R CRing M B s b B 0 s Y n 0 T n × ˙ M A U G n = T A n 0 n × ˙ M A U G n
132 8 1 2 3 4 12 mat2pmatrhm N Fin R CRing T A RingHom Y
133 132 3adant3 N Fin R CRing M B T A RingHom Y
134 133 ad3antrrr N Fin R CRing M B s b B 0 s n 0 T A RingHom Y
135 2 56 5 rhmmul T A RingHom Y n × ˙ M B U G n B T n × ˙ M A U G n = T n × ˙ M × ˙ T U G n
136 134 45 129 135 syl3anc N Fin R CRing M B s b B 0 s n 0 T n × ˙ M A U G n = T n × ˙ M × ˙ T U G n
137 8 1 2 3 4 12 mat2pmatmhm N Fin R CRing T mulGrp A MndHom mulGrp Y
138 137 3adant3 N Fin R CRing M B T mulGrp A MndHom mulGrp Y
139 138 ad3antrrr N Fin R CRing M B s b B 0 s n 0 T mulGrp A MndHom mulGrp Y
140 43 16 17 mhmmulg T mulGrp A MndHom mulGrp Y n 0 M B T n × ˙ M = n E T M
141 139 40 42 140 syl3anc N Fin R CRing M B s b B 0 s n 0 T n × ˙ M = n E T M
142 19 ad3antrrr N Fin R CRing M B s b B 0 s n 0 N Fin
143 22 ad3antrrr N Fin R CRing M B s b B 0 s n 0 R Ring
144 46 15 8 m2cpminvid2 N Fin R Ring G n N ConstPolyMat R T U G n = G n
145 142 143 54 144 syl3anc N Fin R CRing M B s b B 0 s n 0 T U G n = G n
146 141 145 oveq12d N Fin R CRing M B s b B 0 s n 0 T n × ˙ M × ˙ T U G n = n E T M × ˙ G n
147 136 146 eqtrd N Fin R CRing M B s b B 0 s n 0 T n × ˙ M A U G n = n E T M × ˙ G n
148 147 mpteq2dva N Fin R CRing M B s b B 0 s n 0 T n × ˙ M A U G n = n 0 n E T M × ˙ G n
149 148 oveq2d N Fin R CRing M B s b B 0 s Y n 0 T n × ˙ M A U G n = Y n 0 n E T M × ˙ G n
150 131 149 eqtr3d N Fin R CRing M B s b B 0 s T A n 0 n × ˙ M A U G n = Y n 0 n E T M × ˙ G n
151 150 fveq2d N Fin R CRing M B s b B 0 s U T A n 0 n × ˙ M A U G n = U Y n 0 n E T M × ˙ G n
152 115 151 eqtr3d N Fin R CRing M B s b B 0 s A n 0 n × ˙ M A U G n = U Y n 0 n E T M × ˙ G n
153 18 152 sylan9eqr N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n A n 0 coe 1 K n ˙ n × ˙ M = U Y n 0 n E T M × ˙ G n
154 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 56 cayhamlem3 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M A U G n
155 153 154 reximddv2 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = U Y n 0 n E T M × ˙ G n