Step |
Hyp |
Ref |
Expression |
1 |
|
chcoeffeq.a |
|
2 |
|
chcoeffeq.b |
|
3 |
|
chcoeffeq.p |
|
4 |
|
chcoeffeq.y |
|
5 |
|
chcoeffeq.r |
|
6 |
|
chcoeffeq.s |
|
7 |
|
chcoeffeq.0 |
|
8 |
|
chcoeffeq.t |
|
9 |
|
chcoeffeq.c |
|
10 |
|
chcoeffeq.k |
|
11 |
|
chcoeffeq.g |
|
12 |
|
chcoeffeq.w |
|
13 |
|
chcoeffeq.1 |
|
14 |
|
chcoeffeq.m |
|
15 |
|
chcoeffeq.u |
|
16 |
|
cayhamlem.e1 |
|
17 |
|
cayhamlem.e2 |
|
18 |
|
id |
|
19 |
|
simp1 |
|
20 |
19
|
ad2antrr |
|
21 |
|
crngring |
|
22 |
21
|
3ad2ant2 |
|
23 |
22
|
ad2antrr |
|
24 |
|
eqid |
|
25 |
1
|
matring |
|
26 |
21 25
|
sylan2 |
|
27 |
|
ringcmn |
|
28 |
26 27
|
syl |
|
29 |
28
|
3adant3 |
|
30 |
29
|
ad2antrr |
|
31 |
|
nn0ex |
|
32 |
31
|
a1i |
|
33 |
20 23 25
|
syl2anc |
|
34 |
33
|
adantr |
|
35 |
19 22 25
|
syl2anc |
|
36 |
|
eqid |
|
37 |
36
|
ringmgp |
|
38 |
35 37
|
syl |
|
39 |
38
|
ad3antrrr |
|
40 |
|
simpr |
|
41 |
|
simpll3 |
|
42 |
41
|
adantr |
|
43 |
36 2
|
mgpbas |
|
44 |
43 16
|
mulgnn0cl |
|
45 |
39 40 42 44
|
syl3anc |
|
46 |
|
eqid |
|
47 |
1 2 46 15
|
cpm2mf |
|
48 |
19 22 47
|
syl2anc |
|
49 |
48
|
ad3antrrr |
|
50 |
|
simplr |
|
51 |
|
simpr |
|
52 |
1 2 3 4 5 6 7 8 11 46
|
chfacfisfcpmat |
|
53 |
20 23 41 50 51 52
|
syl32anc |
|
54 |
53
|
ffvelrnda |
|
55 |
49 54
|
ffvelrnd |
|
56 |
|
eqid |
|
57 |
2 56
|
ringcl |
|
58 |
34 45 55 57
|
syl3anc |
|
59 |
58
|
fmpttd |
|
60 |
|
fvexd |
|
61 |
|
ovexd |
|
62 |
1 2 3 4 5 6 7 8 11
|
chfacffsupp |
|
63 |
62
|
anassrs |
|
64 |
|
ovex |
|
65 |
64 31
|
pm3.2i |
|
66 |
|
elmapg |
|
67 |
65 66
|
mp1i |
|
68 |
53 67
|
mpbird |
|
69 |
|
fvex |
|
70 |
|
fsuppmapnn0ub |
|
71 |
68 69 70
|
sylancl |
|
72 |
|
csbov12g |
|
73 |
|
csbov1g |
|
74 |
|
csbvarg |
|
75 |
74
|
oveq1d |
|
76 |
73 75
|
eqtrd |
|
77 |
|
csbfv2g |
|
78 |
|
csbfv |
|
79 |
78
|
a1i |
|
80 |
79
|
fveq2d |
|
81 |
77 80
|
eqtrd |
|
82 |
76 81
|
oveq12d |
|
83 |
72 82
|
eqtrd |
|
84 |
83
|
ad2antlr |
|
85 |
|
fveq2 |
|
86 |
19 22
|
jca |
|
87 |
86
|
adantr |
|
88 |
|
eqid |
|
89 |
1 15 3 4 24 88
|
m2cpminv0 |
|
90 |
87 89
|
syl |
|
91 |
90
|
ad2antrr |
|
92 |
85 91
|
sylan9eqr |
|
93 |
92
|
oveq2d |
|
94 |
33
|
adantr |
|
95 |
38
|
ad3antrrr |
|
96 |
|
simpr |
|
97 |
41
|
adantr |
|
98 |
43 16
|
mulgnn0cl |
|
99 |
95 96 97 98
|
syl3anc |
|
100 |
94 99
|
jca |
|
101 |
100
|
adantr |
|
102 |
2 56 24
|
ringrz |
|
103 |
101 102
|
syl |
|
104 |
84 93 103
|
3eqtrd |
|
105 |
104
|
ex |
|
106 |
105
|
adantlr |
|
107 |
106
|
imim2d |
|
108 |
107
|
ralimdva |
|
109 |
108
|
reximdva |
|
110 |
71 109
|
syld |
|
111 |
63 110
|
mpd |
|
112 |
60 61 111
|
mptnn0fsupp |
|
113 |
2 24 30 32 59 112
|
gsumcl |
|
114 |
15 1 2 8
|
m2cpminvid |
|
115 |
20 23 113 114
|
syl3anc |
|
116 |
3 4
|
pmatring |
|
117 |
19 22 116
|
syl2anc |
|
118 |
|
ringmnd |
|
119 |
117 118
|
syl |
|
120 |
119
|
ad2antrr |
|
121 |
8 1 2 3 4 12
|
mat2pmatghm |
|
122 |
20 23 121
|
syl2anc |
|
123 |
|
ghmmhm |
|
124 |
122 123
|
syl |
|
125 |
35
|
ad3antrrr |
|
126 |
21 47
|
sylan2 |
|
127 |
126
|
3adant3 |
|
128 |
127
|
ad3antrrr |
|
129 |
128 54
|
ffvelrnd |
|
130 |
125 45 129 57
|
syl3anc |
|
131 |
2 24 30 120 32 124 130 112
|
gsummptmhm |
|
132 |
8 1 2 3 4 12
|
mat2pmatrhm |
|
133 |
132
|
3adant3 |
|
134 |
133
|
ad3antrrr |
|
135 |
2 56 5
|
rhmmul |
|
136 |
134 45 129 135
|
syl3anc |
|
137 |
8 1 2 3 4 12
|
mat2pmatmhm |
|
138 |
137
|
3adant3 |
|
139 |
138
|
ad3antrrr |
|
140 |
43 16 17
|
mhmmulg |
|
141 |
139 40 42 140
|
syl3anc |
|
142 |
19
|
ad3antrrr |
|
143 |
22
|
ad3antrrr |
|
144 |
46 15 8
|
m2cpminvid2 |
|
145 |
142 143 54 144
|
syl3anc |
|
146 |
141 145
|
oveq12d |
|
147 |
136 146
|
eqtrd |
|
148 |
147
|
mpteq2dva |
|
149 |
148
|
oveq2d |
|
150 |
131 149
|
eqtr3d |
|
151 |
150
|
fveq2d |
|
152 |
115 151
|
eqtr3d |
|
153 |
18 152
|
sylan9eqr |
|
154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 56
|
cayhamlem3 |
|
155 |
153 154
|
reximddv2 |
|