| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayleyhamilton0.a |
|
| 2 |
|
cayleyhamilton0.b |
|
| 3 |
|
cayleyhamilton0.0 |
|
| 4 |
|
cayleyhamilton0.1 |
|
| 5 |
|
cayleyhamilton0.m |
|
| 6 |
|
cayleyhamilton0.e1 |
|
| 7 |
|
cayleyhamilton0.c |
|
| 8 |
|
cayleyhamilton0.k |
|
| 9 |
|
cayleyhamilton0.p |
|
| 10 |
|
cayleyhamilton0.y |
|
| 11 |
|
cayleyhamilton0.r |
|
| 12 |
|
cayleyhamilton0.s |
|
| 13 |
|
cayleyhamilton0.z |
|
| 14 |
|
cayleyhamilton0.w |
|
| 15 |
|
cayleyhamilton0.e2 |
|
| 16 |
|
cayleyhamilton0.t |
|
| 17 |
|
cayleyhamilton0.g |
|
| 18 |
|
cayleyhamilton0.u |
|
| 19 |
|
eqid |
|
| 20 |
1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15
|
cayhamlem4 |
|
| 21 |
8
|
eqcomi |
|
| 22 |
21
|
a1i |
|
| 23 |
22
|
fveq1d |
|
| 24 |
23
|
oveq1d |
|
| 25 |
24
|
mpteq2dva |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
27
|
biimpa |
|
| 29 |
|
oveq1 |
|
| 30 |
|
fveq2 |
|
| 31 |
29 30
|
oveq12d |
|
| 32 |
31
|
cbvmptv |
|
| 33 |
32
|
oveq2i |
|
| 34 |
1 2 9 10 11 12 13 16 17 15
|
cayhamlem1 |
|
| 35 |
33 34
|
eqtrid |
|
| 36 |
|
fveq2 |
|
| 37 |
|
crngring |
|
| 38 |
37
|
anim2i |
|
| 39 |
38
|
3adant3 |
|
| 40 |
|
eqid |
|
| 41 |
1 18 9 10 40 13
|
m2cpminv0 |
|
| 42 |
39 41
|
syl |
|
| 43 |
42 3
|
eqtr4di |
|
| 44 |
43
|
adantr |
|
| 45 |
36 44
|
sylan9eqr |
|
| 46 |
35 45
|
mpdan |
|
| 47 |
46
|
adantr |
|
| 48 |
28 47
|
eqtrd |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
rexlimdvva |
|
| 51 |
20 50
|
mpd |
|