Step |
Hyp |
Ref |
Expression |
1 |
|
cayleyhamilton.a |
|
2 |
|
cayleyhamilton.b |
|
3 |
|
cayleyhamilton.0 |
|
4 |
|
cayleyhamilton.c |
|
5 |
|
cayleyhamilton.k |
|
6 |
|
cayleyhamilton.m |
|
7 |
|
cayleyhamilton.e |
|
8 |
|
cayleyhamilton1.l |
|
9 |
|
cayleyhamilton1.x |
|
10 |
|
cayleyhamilton1.p |
|
11 |
|
cayleyhamilton1.m |
|
12 |
|
cayleyhamilton1.e |
|
13 |
|
cayleyhamilton1.z |
|
14 |
1 2 3 4 5 6 7
|
cayleyhamilton |
|
15 |
14
|
adantr |
|
16 |
|
nfv |
|
17 |
|
nfcv |
|
18 |
|
nfcv |
|
19 |
|
nfmpt1 |
|
20 |
17 18 19
|
nfov |
|
21 |
20
|
nfeq2 |
|
22 |
16 21
|
nfan |
|
23 |
|
crngring |
|
24 |
23
|
3ad2ant2 |
|
25 |
24
|
adantr |
|
26 |
|
eqid |
|
27 |
4 1 2 10 26
|
chpmatply1 |
|
28 |
27
|
adantr |
|
29 |
|
eqid |
|
30 |
|
elmapi |
|
31 |
|
ffvelrn |
|
32 |
31
|
ralrimiva |
|
33 |
30 32
|
syl |
|
34 |
33
|
ad2antrl |
|
35 |
30
|
feqmptd |
|
36 |
13
|
a1i |
|
37 |
35 36
|
breq12d |
|
38 |
37
|
biimpa |
|
39 |
38
|
adantl |
|
40 |
10 26 9 12 25 8 11 29 34 39
|
gsumsmonply1 |
|
41 |
|
fveq2 |
|
42 |
|
oveq1 |
|
43 |
41 42
|
oveq12d |
|
44 |
43
|
cbvmptv |
|
45 |
44
|
oveq2i |
|
46 |
45
|
fveq2i |
|
47 |
10 26 5 46
|
ply1coe1eq |
|
48 |
25 28 40 47
|
syl3anc |
|
49 |
|
fveq2 |
|
50 |
|
fveq2 |
|
51 |
49 50
|
eqeq12d |
|
52 |
51
|
rspcva |
|
53 |
|
simpl |
|
54 |
24
|
ad2antrl |
|
55 |
|
ffvelrn |
|
56 |
55
|
ralrimiva |
|
57 |
30 56
|
syl |
|
58 |
57
|
ad2antrl |
|
59 |
58
|
adantl |
|
60 |
30
|
feqmptd |
|
61 |
60
|
breq1d |
|
62 |
61
|
biimpa |
|
63 |
62
|
adantl |
|
64 |
63
|
adantl |
|
65 |
|
simpl |
|
66 |
10 26 9 12 54 8 11 13 59 64 65
|
gsummoncoe1 |
|
67 |
|
csbfv |
|
68 |
66 67
|
eqtrdi |
|
69 |
68
|
adantl |
|
70 |
53 69
|
eqtrd |
|
71 |
70
|
exp32 |
|
72 |
71
|
com12 |
|
73 |
72
|
adantr |
|
74 |
52 73
|
mpd |
|
75 |
74
|
com12 |
|
76 |
75
|
expcomd |
|
77 |
48 76
|
sylbird |
|
78 |
77
|
imp31 |
|
79 |
78
|
oveq1d |
|
80 |
22 79
|
mpteq2da |
|
81 |
80
|
oveq2d |
|
82 |
81
|
eqeq1d |
|
83 |
82
|
biimpd |
|
84 |
83
|
ex |
|
85 |
15 84
|
mpid |
|