| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayleyhamilton.a |
|
| 2 |
|
cayleyhamilton.b |
|
| 3 |
|
cayleyhamilton.0 |
|
| 4 |
|
cayleyhamilton.c |
|
| 5 |
|
cayleyhamilton.k |
|
| 6 |
|
cayleyhamilton.m |
|
| 7 |
|
cayleyhamilton.e |
|
| 8 |
|
cayleyhamilton1.l |
|
| 9 |
|
cayleyhamilton1.x |
|
| 10 |
|
cayleyhamilton1.p |
|
| 11 |
|
cayleyhamilton1.m |
|
| 12 |
|
cayleyhamilton1.e |
|
| 13 |
|
cayleyhamilton1.z |
|
| 14 |
1 2 3 4 5 6 7
|
cayleyhamilton |
|
| 15 |
14
|
adantr |
|
| 16 |
|
nfv |
|
| 17 |
|
nfcv |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfmpt1 |
|
| 20 |
17 18 19
|
nfov |
|
| 21 |
20
|
nfeq2 |
|
| 22 |
16 21
|
nfan |
|
| 23 |
|
crngring |
|
| 24 |
23
|
3ad2ant2 |
|
| 25 |
24
|
adantr |
|
| 26 |
|
eqid |
|
| 27 |
4 1 2 10 26
|
chpmatply1 |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
|
elmapi |
|
| 31 |
|
ffvelcdm |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
30 32
|
syl |
|
| 34 |
33
|
ad2antrl |
|
| 35 |
30
|
feqmptd |
|
| 36 |
13
|
a1i |
|
| 37 |
35 36
|
breq12d |
|
| 38 |
37
|
biimpa |
|
| 39 |
38
|
adantl |
|
| 40 |
10 26 9 12 25 8 11 29 34 39
|
gsumsmonply1 |
|
| 41 |
|
fveq2 |
|
| 42 |
|
oveq1 |
|
| 43 |
41 42
|
oveq12d |
|
| 44 |
43
|
cbvmptv |
|
| 45 |
44
|
oveq2i |
|
| 46 |
45
|
fveq2i |
|
| 47 |
10 26 5 46
|
ply1coe1eq |
|
| 48 |
25 28 40 47
|
syl3anc |
|
| 49 |
|
fveq2 |
|
| 50 |
|
fveq2 |
|
| 51 |
49 50
|
eqeq12d |
|
| 52 |
51
|
rspcva |
|
| 53 |
|
simpl |
|
| 54 |
24
|
ad2antrl |
|
| 55 |
|
ffvelcdm |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
30 56
|
syl |
|
| 58 |
57
|
ad2antrl |
|
| 59 |
58
|
adantl |
|
| 60 |
30
|
feqmptd |
|
| 61 |
60
|
breq1d |
|
| 62 |
61
|
biimpa |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
adantl |
|
| 65 |
|
simpl |
|
| 66 |
10 26 9 12 54 8 11 13 59 64 65
|
gsummoncoe1 |
|
| 67 |
|
csbfv |
|
| 68 |
66 67
|
eqtrdi |
|
| 69 |
68
|
adantl |
|
| 70 |
53 69
|
eqtrd |
|
| 71 |
70
|
exp32 |
|
| 72 |
71
|
com12 |
|
| 73 |
72
|
adantr |
|
| 74 |
52 73
|
mpd |
|
| 75 |
74
|
com12 |
|
| 76 |
75
|
expcomd |
|
| 77 |
48 76
|
sylbird |
|
| 78 |
77
|
imp31 |
|
| 79 |
78
|
oveq1d |
|
| 80 |
22 79
|
mpteq2da |
|
| 81 |
80
|
oveq2d |
|
| 82 |
81
|
eqeq1d |
|
| 83 |
82
|
biimpd |
|
| 84 |
83
|
ex |
|
| 85 |
15 84
|
mpid |
|