Metamath Proof Explorer


Theorem cayleyhamilton1

Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton , the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients ( Fn ) , then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019)

Ref Expression
Hypotheses cayleyhamilton.a A = N Mat R
cayleyhamilton.b B = Base A
cayleyhamilton.0 0 ˙ = 0 A
cayleyhamilton.c C = N CharPlyMat R
cayleyhamilton.k K = coe 1 C M
cayleyhamilton.m ˙ = A
cayleyhamilton.e × ˙ = mulGrp A
cayleyhamilton1.l L = Base R
cayleyhamilton1.x X = var 1 R
cayleyhamilton1.p P = Poly 1 R
cayleyhamilton1.m · ˙ = P
cayleyhamilton1.e E = mulGrp P
cayleyhamilton1.z Z = 0 R
Assertion cayleyhamilton1 N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X A n 0 F n ˙ n × ˙ M = 0 ˙

Proof

Step Hyp Ref Expression
1 cayleyhamilton.a A = N Mat R
2 cayleyhamilton.b B = Base A
3 cayleyhamilton.0 0 ˙ = 0 A
4 cayleyhamilton.c C = N CharPlyMat R
5 cayleyhamilton.k K = coe 1 C M
6 cayleyhamilton.m ˙ = A
7 cayleyhamilton.e × ˙ = mulGrp A
8 cayleyhamilton1.l L = Base R
9 cayleyhamilton1.x X = var 1 R
10 cayleyhamilton1.p P = Poly 1 R
11 cayleyhamilton1.m · ˙ = P
12 cayleyhamilton1.e E = mulGrp P
13 cayleyhamilton1.z Z = 0 R
14 1 2 3 4 5 6 7 cayleyhamilton N Fin R CRing M B A n 0 K n ˙ n × ˙ M = 0 ˙
15 14 adantr N Fin R CRing M B F L 0 finSupp Z F A n 0 K n ˙ n × ˙ M = 0 ˙
16 nfv n N Fin R CRing M B F L 0 finSupp Z F
17 nfcv _ n P
18 nfcv _ n Σ𝑔
19 nfmpt1 _ n n 0 F n · ˙ n E X
20 17 18 19 nfov _ n P n 0 F n · ˙ n E X
21 20 nfeq2 n C M = P n 0 F n · ˙ n E X
22 16 21 nfan n N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X
23 crngring R CRing R Ring
24 23 3ad2ant2 N Fin R CRing M B R Ring
25 24 adantr N Fin R CRing M B F L 0 finSupp Z F R Ring
26 eqid Base P = Base P
27 4 1 2 10 26 chpmatply1 N Fin R CRing M B C M Base P
28 27 adantr N Fin R CRing M B F L 0 finSupp Z F C M Base P
29 eqid 0 R = 0 R
30 elmapi F L 0 F : 0 L
31 ffvelrn F : 0 L n 0 F n L
32 31 ralrimiva F : 0 L n 0 F n L
33 30 32 syl F L 0 n 0 F n L
34 33 ad2antrl N Fin R CRing M B F L 0 finSupp Z F n 0 F n L
35 30 feqmptd F L 0 F = n 0 F n
36 13 a1i F L 0 Z = 0 R
37 35 36 breq12d F L 0 finSupp Z F finSupp 0 R n 0 F n
38 37 biimpa F L 0 finSupp Z F finSupp 0 R n 0 F n
39 38 adantl N Fin R CRing M B F L 0 finSupp Z F finSupp 0 R n 0 F n
40 10 26 9 12 25 8 11 29 34 39 gsumsmonply1 N Fin R CRing M B F L 0 finSupp Z F P n 0 F n · ˙ n E X Base P
41 fveq2 i = n F i = F n
42 oveq1 i = n i E X = n E X
43 41 42 oveq12d i = n F i · ˙ i E X = F n · ˙ n E X
44 43 cbvmptv i 0 F i · ˙ i E X = n 0 F n · ˙ n E X
45 44 oveq2i P i 0 F i · ˙ i E X = P n 0 F n · ˙ n E X
46 45 fveq2i coe 1 P i 0 F i · ˙ i E X = coe 1 P n 0 F n · ˙ n E X
47 10 26 5 46 ply1coe1eq R Ring C M Base P P n 0 F n · ˙ n E X Base P m 0 K m = coe 1 P i 0 F i · ˙ i E X m C M = P n 0 F n · ˙ n E X
48 25 28 40 47 syl3anc N Fin R CRing M B F L 0 finSupp Z F m 0 K m = coe 1 P i 0 F i · ˙ i E X m C M = P n 0 F n · ˙ n E X
49 fveq2 m = n K m = K n
50 fveq2 m = n coe 1 P i 0 F i · ˙ i E X m = coe 1 P i 0 F i · ˙ i E X n
51 49 50 eqeq12d m = n K m = coe 1 P i 0 F i · ˙ i E X m K n = coe 1 P i 0 F i · ˙ i E X n
52 51 rspcva n 0 m 0 K m = coe 1 P i 0 F i · ˙ i E X m K n = coe 1 P i 0 F i · ˙ i E X n
53 simpl K n = coe 1 P i 0 F i · ˙ i E X n n 0 N Fin R CRing M B F L 0 finSupp Z F K n = coe 1 P i 0 F i · ˙ i E X n
54 24 ad2antrl n 0 N Fin R CRing M B F L 0 finSupp Z F R Ring
55 ffvelrn F : 0 L i 0 F i L
56 55 ralrimiva F : 0 L i 0 F i L
57 30 56 syl F L 0 i 0 F i L
58 57 ad2antrl N Fin R CRing M B F L 0 finSupp Z F i 0 F i L
59 58 adantl n 0 N Fin R CRing M B F L 0 finSupp Z F i 0 F i L
60 30 feqmptd F L 0 F = i 0 F i
61 60 breq1d F L 0 finSupp Z F finSupp Z i 0 F i
62 61 biimpa F L 0 finSupp Z F finSupp Z i 0 F i
63 62 adantl N Fin R CRing M B F L 0 finSupp Z F finSupp Z i 0 F i
64 63 adantl n 0 N Fin R CRing M B F L 0 finSupp Z F finSupp Z i 0 F i
65 simpl n 0 N Fin R CRing M B F L 0 finSupp Z F n 0
66 10 26 9 12 54 8 11 13 59 64 65 gsummoncoe1 n 0 N Fin R CRing M B F L 0 finSupp Z F coe 1 P i 0 F i · ˙ i E X n = n / i F i
67 csbfv n / i F i = F n
68 66 67 eqtrdi n 0 N Fin R CRing M B F L 0 finSupp Z F coe 1 P i 0 F i · ˙ i E X n = F n
69 68 adantl K n = coe 1 P i 0 F i · ˙ i E X n n 0 N Fin R CRing M B F L 0 finSupp Z F coe 1 P i 0 F i · ˙ i E X n = F n
70 53 69 eqtrd K n = coe 1 P i 0 F i · ˙ i E X n n 0 N Fin R CRing M B F L 0 finSupp Z F K n = F n
71 70 exp32 K n = coe 1 P i 0 F i · ˙ i E X n n 0 N Fin R CRing M B F L 0 finSupp Z F K n = F n
72 71 com12 n 0 K n = coe 1 P i 0 F i · ˙ i E X n N Fin R CRing M B F L 0 finSupp Z F K n = F n
73 72 adantr n 0 m 0 K m = coe 1 P i 0 F i · ˙ i E X m K n = coe 1 P i 0 F i · ˙ i E X n N Fin R CRing M B F L 0 finSupp Z F K n = F n
74 52 73 mpd n 0 m 0 K m = coe 1 P i 0 F i · ˙ i E X m N Fin R CRing M B F L 0 finSupp Z F K n = F n
75 74 com12 N Fin R CRing M B F L 0 finSupp Z F n 0 m 0 K m = coe 1 P i 0 F i · ˙ i E X m K n = F n
76 75 expcomd N Fin R CRing M B F L 0 finSupp Z F m 0 K m = coe 1 P i 0 F i · ˙ i E X m n 0 K n = F n
77 48 76 sylbird N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X n 0 K n = F n
78 77 imp31 N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X n 0 K n = F n
79 78 oveq1d N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X n 0 K n ˙ n × ˙ M = F n ˙ n × ˙ M
80 22 79 mpteq2da N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X n 0 K n ˙ n × ˙ M = n 0 F n ˙ n × ˙ M
81 80 oveq2d N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X A n 0 K n ˙ n × ˙ M = A n 0 F n ˙ n × ˙ M
82 81 eqeq1d N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X A n 0 K n ˙ n × ˙ M = 0 ˙ A n 0 F n ˙ n × ˙ M = 0 ˙
83 82 biimpd N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X A n 0 K n ˙ n × ˙ M = 0 ˙ A n 0 F n ˙ n × ˙ M = 0 ˙
84 83 ex N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X A n 0 K n ˙ n × ˙ M = 0 ˙ A n 0 F n ˙ n × ˙ M = 0 ˙
85 15 84 mpid N Fin R CRing M B F L 0 finSupp Z F C M = P n 0 F n · ˙ n E X A n 0 F n ˙ n × ˙ M = 0 ˙