| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayleyhamilton.a |
|
| 2 |
|
cayleyhamilton.b |
|
| 3 |
|
cayleyhamilton.0 |
|
| 4 |
|
cayleyhamilton.c |
|
| 5 |
|
cayleyhamilton.k |
|
| 6 |
|
cayleyhamilton.m |
|
| 7 |
|
cayleyhamilton.e |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqeq1 |
|
| 16 |
|
eqeq1 |
|
| 17 |
|
breq2 |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
fveq2d |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
20 23
|
oveq12d |
|
| 25 |
17 24
|
ifbieq2d |
|
| 26 |
16 25
|
ifbieq2d |
|
| 27 |
15 26
|
ifbieq2d |
|
| 28 |
27
|
cbvmptv |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
1 2 8 9 10 11 12 13 4 14 28 29 30 6 31 7 32
|
cayhamlem4 |
|
| 34 |
|
eqid |
|
| 35 |
31 34
|
cpm2mfval |
|
| 36 |
35
|
eqcomd |
|
| 37 |
36
|
3adant3 |
|
| 38 |
37
|
fveq1d |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
39
|
2rexbidv |
|
| 41 |
33 40
|
mpbird |
|
| 42 |
5
|
eqcomi |
|
| 43 |
42
|
a1i |
|
| 44 |
43
|
fveq1d |
|
| 45 |
44
|
oveq1d |
|
| 46 |
45
|
mpteq2dva |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
48
|
biimpa |
|
| 50 |
|
oveq1 |
|
| 51 |
|
fveq2 |
|
| 52 |
50 51
|
oveq12d |
|
| 53 |
52
|
cbvmptv |
|
| 54 |
53
|
oveq2i |
|
| 55 |
54
|
a1i |
|
| 56 |
1 2 8 9 10 11 12 13 28 32
|
cayhamlem1 |
|
| 57 |
55 56
|
eqtrd |
|
| 58 |
|
fveq2 |
|
| 59 |
|
crngring |
|
| 60 |
59
|
anim2i |
|
| 61 |
60
|
3adant3 |
|
| 62 |
31 34
|
cpm2mfval |
|
| 63 |
62
|
eqcomd |
|
| 64 |
63
|
fveq1d |
|
| 65 |
|
eqid |
|
| 66 |
1 31 8 9 65 12
|
m2cpminv0 |
|
| 67 |
64 66
|
eqtrd |
|
| 68 |
61 67
|
syl |
|
| 69 |
68 3
|
eqtr4di |
|
| 70 |
69
|
adantr |
|
| 71 |
58 70
|
sylan9eqr |
|
| 72 |
57 71
|
mpdan |
|
| 73 |
72
|
adantr |
|
| 74 |
49 73
|
eqtrd |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
rexlimdvva |
|
| 77 |
41 76
|
mpd |
|