Metamath Proof Explorer


Theorem cayleyhamiltonALT

Description: Alternate proof of cayleyhamilton , the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 directly, but has the same structure as the proof of cayleyhamilton0 . In contrast to the proof of cayleyhamilton0 , only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses cayleyhamilton.a A = N Mat R
cayleyhamilton.b B = Base A
cayleyhamilton.0 0 ˙ = 0 A
cayleyhamilton.c C = N CharPlyMat R
cayleyhamilton.k K = coe 1 C M
cayleyhamilton.m ˙ = A
cayleyhamilton.e × ˙ = mulGrp A
Assertion cayleyhamiltonALT N Fin R CRing M B A n 0 K n ˙ n × ˙ M = 0 ˙

Proof

Step Hyp Ref Expression
1 cayleyhamilton.a A = N Mat R
2 cayleyhamilton.b B = Base A
3 cayleyhamilton.0 0 ˙ = 0 A
4 cayleyhamilton.c C = N CharPlyMat R
5 cayleyhamilton.k K = coe 1 C M
6 cayleyhamilton.m ˙ = A
7 cayleyhamilton.e × ˙ = mulGrp A
8 eqid Poly 1 R = Poly 1 R
9 eqid N Mat Poly 1 R = N Mat Poly 1 R
10 eqid N Mat Poly 1 R = N Mat Poly 1 R
11 eqid - N Mat Poly 1 R = - N Mat Poly 1 R
12 eqid 0 N Mat Poly 1 R = 0 N Mat Poly 1 R
13 eqid N matToPolyMat R = N matToPolyMat R
14 eqid C M = C M
15 eqeq1 l = n l = 0 n = 0
16 eqeq1 l = n l = s + 1 n = s + 1
17 breq2 l = n s + 1 < l s + 1 < n
18 oveq1 l = n l 1 = n 1
19 18 fveq2d l = n b l 1 = b n 1
20 19 fveq2d l = n N matToPolyMat R b l 1 = N matToPolyMat R b n 1
21 fveq2 l = n b l = b n
22 21 fveq2d l = n N matToPolyMat R b l = N matToPolyMat R b n
23 22 oveq2d l = n N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l = N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b n
24 20 23 oveq12d l = n N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l = N matToPolyMat R b n 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b n
25 17 24 ifbieq2d l = n if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l = if s + 1 < n 0 N Mat Poly 1 R N matToPolyMat R b n 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b n
26 16 25 ifbieq2d l = n if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l = if n = s + 1 N matToPolyMat R b s if s + 1 < n 0 N Mat Poly 1 R N matToPolyMat R b n 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b n
27 15 26 ifbieq2d l = n if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l = if n = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if n = s + 1 N matToPolyMat R b s if s + 1 < n 0 N Mat Poly 1 R N matToPolyMat R b n 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b n
28 27 cbvmptv l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l = n 0 if n = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if n = s + 1 N matToPolyMat R b s if s + 1 < n 0 N Mat Poly 1 R N matToPolyMat R b n 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b n
29 eqid Base N Mat Poly 1 R = Base N Mat Poly 1 R
30 eqid 1 A = 1 A
31 eqid N cPolyMatToMat R = N cPolyMatToMat R
32 eqid mulGrp N Mat Poly 1 R = mulGrp N Mat Poly 1 R
33 1 2 8 9 10 11 12 13 4 14 28 29 30 6 31 7 32 cayhamlem4 N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = N cPolyMatToMat R N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
34 eqid N ConstPolyMat R = N ConstPolyMat R
35 31 34 cpm2mfval N Fin R CRing N cPolyMatToMat R = m N ConstPolyMat R x N , y N coe 1 x m y 0
36 35 eqcomd N Fin R CRing m N ConstPolyMat R x N , y N coe 1 x m y 0 = N cPolyMatToMat R
37 36 3adant3 N Fin R CRing M B m N ConstPolyMat R x N , y N coe 1 x m y 0 = N cPolyMatToMat R
38 37 fveq1d N Fin R CRing M B m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = N cPolyMatToMat R N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
39 38 eqeq2d N Fin R CRing M B A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n A n 0 coe 1 C M n ˙ n × ˙ M = N cPolyMatToMat R N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
40 39 2rexbidv N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = N cPolyMatToMat R N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
41 33 40 mpbird N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
42 5 eqcomi coe 1 C M = K
43 42 a1i N Fin R CRing M B s b B 0 s n 0 coe 1 C M = K
44 43 fveq1d N Fin R CRing M B s b B 0 s n 0 coe 1 C M n = K n
45 44 oveq1d N Fin R CRing M B s b B 0 s n 0 coe 1 C M n ˙ n × ˙ M = K n ˙ n × ˙ M
46 45 mpteq2dva N Fin R CRing M B s b B 0 s n 0 coe 1 C M n ˙ n × ˙ M = n 0 K n ˙ n × ˙ M
47 46 oveq2d N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = A n 0 K n ˙ n × ˙ M
48 47 eqeq1d N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n A n 0 K n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
49 48 biimpa N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n A n 0 K n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n
50 oveq1 n = j n mulGrp N Mat Poly 1 R N matToPolyMat R M = j mulGrp N Mat Poly 1 R N matToPolyMat R M
51 fveq2 n = j l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l j
52 50 51 oveq12d n = j n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = j mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l j
53 52 cbvmptv n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = j 0 j mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l j
54 53 oveq2i N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = N Mat Poly 1 R j 0 j mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l j
55 54 a1i N Fin R CRing M B s b B 0 s N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = N Mat Poly 1 R j 0 j mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l j
56 1 2 8 9 10 11 12 13 28 32 cayhamlem1 N Fin R CRing M B s b B 0 s N Mat Poly 1 R j 0 j mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l j = 0 N Mat Poly 1 R
57 55 56 eqtrd N Fin R CRing M B s b B 0 s N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = 0 N Mat Poly 1 R
58 fveq2 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = 0 N Mat Poly 1 R m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = m N ConstPolyMat R x N , y N coe 1 x m y 0 0 N Mat Poly 1 R
59 crngring R CRing R Ring
60 59 anim2i N Fin R CRing N Fin R Ring
61 60 3adant3 N Fin R CRing M B N Fin R Ring
62 31 34 cpm2mfval N Fin R Ring N cPolyMatToMat R = m N ConstPolyMat R x N , y N coe 1 x m y 0
63 62 eqcomd N Fin R Ring m N ConstPolyMat R x N , y N coe 1 x m y 0 = N cPolyMatToMat R
64 63 fveq1d N Fin R Ring m N ConstPolyMat R x N , y N coe 1 x m y 0 0 N Mat Poly 1 R = N cPolyMatToMat R 0 N Mat Poly 1 R
65 eqid 0 A = 0 A
66 1 31 8 9 65 12 m2cpminv0 N Fin R Ring N cPolyMatToMat R 0 N Mat Poly 1 R = 0 A
67 64 66 eqtrd N Fin R Ring m N ConstPolyMat R x N , y N coe 1 x m y 0 0 N Mat Poly 1 R = 0 A
68 61 67 syl N Fin R CRing M B m N ConstPolyMat R x N , y N coe 1 x m y 0 0 N Mat Poly 1 R = 0 A
69 68 3 eqtr4di N Fin R CRing M B m N ConstPolyMat R x N , y N coe 1 x m y 0 0 N Mat Poly 1 R = 0 ˙
70 69 adantr N Fin R CRing M B s b B 0 s m N ConstPolyMat R x N , y N coe 1 x m y 0 0 N Mat Poly 1 R = 0 ˙
71 58 70 sylan9eqr N Fin R CRing M B s b B 0 s N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = 0 N Mat Poly 1 R m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = 0 ˙
72 57 71 mpdan N Fin R CRing M B s b B 0 s m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = 0 ˙
73 72 adantr N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n = 0 ˙
74 49 73 eqtrd N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n A n 0 K n ˙ n × ˙ M = 0 ˙
75 74 ex N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n A n 0 K n ˙ n × ˙ M = 0 ˙
76 75 rexlimdvva N Fin R CRing M B s b B 0 s A n 0 coe 1 C M n ˙ n × ˙ M = m N ConstPolyMat R x N , y N coe 1 x m y 0 N Mat Poly 1 R n 0 n mulGrp N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R l 0 if l = 0 0 N Mat Poly 1 R - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b 0 if l = s + 1 N matToPolyMat R b s if s + 1 < l 0 N Mat Poly 1 R N matToPolyMat R b l 1 - N Mat Poly 1 R N matToPolyMat R M N Mat Poly 1 R N matToPolyMat R b l n A n 0 K n ˙ n × ˙ M = 0 ˙
77 41 76 mpd N Fin R CRing M B A n 0 K n ˙ n × ˙ M = 0 ˙