Step |
Hyp |
Ref |
Expression |
1 |
|
cayleyhamilton.a |
|
2 |
|
cayleyhamilton.b |
|
3 |
|
cayleyhamilton.0 |
|
4 |
|
cayleyhamilton.c |
|
5 |
|
cayleyhamilton.k |
|
6 |
|
cayleyhamilton.m |
|
7 |
|
cayleyhamilton.e |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqeq1 |
|
16 |
|
eqeq1 |
|
17 |
|
breq2 |
|
18 |
|
oveq1 |
|
19 |
18
|
fveq2d |
|
20 |
19
|
fveq2d |
|
21 |
|
fveq2 |
|
22 |
21
|
fveq2d |
|
23 |
22
|
oveq2d |
|
24 |
20 23
|
oveq12d |
|
25 |
17 24
|
ifbieq2d |
|
26 |
16 25
|
ifbieq2d |
|
27 |
15 26
|
ifbieq2d |
|
28 |
27
|
cbvmptv |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
1 2 8 9 10 11 12 13 4 14 28 29 30 6 31 7 32
|
cayhamlem4 |
|
34 |
|
eqid |
|
35 |
31 34
|
cpm2mfval |
|
36 |
35
|
eqcomd |
|
37 |
36
|
3adant3 |
|
38 |
37
|
fveq1d |
|
39 |
38
|
eqeq2d |
|
40 |
39
|
2rexbidv |
|
41 |
33 40
|
mpbird |
|
42 |
5
|
eqcomi |
|
43 |
42
|
a1i |
|
44 |
43
|
fveq1d |
|
45 |
44
|
oveq1d |
|
46 |
45
|
mpteq2dva |
|
47 |
46
|
oveq2d |
|
48 |
47
|
eqeq1d |
|
49 |
48
|
biimpa |
|
50 |
|
oveq1 |
|
51 |
|
fveq2 |
|
52 |
50 51
|
oveq12d |
|
53 |
52
|
cbvmptv |
|
54 |
53
|
oveq2i |
|
55 |
54
|
a1i |
|
56 |
1 2 8 9 10 11 12 13 28 32
|
cayhamlem1 |
|
57 |
55 56
|
eqtrd |
|
58 |
|
fveq2 |
|
59 |
|
crngring |
|
60 |
59
|
anim2i |
|
61 |
60
|
3adant3 |
|
62 |
31 34
|
cpm2mfval |
|
63 |
62
|
eqcomd |
|
64 |
63
|
fveq1d |
|
65 |
|
eqid |
|
66 |
1 31 8 9 65 12
|
m2cpminv0 |
|
67 |
64 66
|
eqtrd |
|
68 |
61 67
|
syl |
|
69 |
68 3
|
eqtr4di |
|
70 |
69
|
adantr |
|
71 |
58 70
|
sylan9eqr |
|
72 |
57 71
|
mpdan |
|
73 |
72
|
adantr |
|
74 |
49 73
|
eqtrd |
|
75 |
74
|
ex |
|
76 |
75
|
rexlimdvva |
|
77 |
41 76
|
mpd |
|