Metamath Proof Explorer


Theorem cbncms

Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007) Use bncmet (or preferably bncms ) instead. (New usage is discouraged.)

Ref Expression
Hypotheses iscbn.x X = BaseSet U
iscbn.8 D = IndMet U
Assertion cbncms U CBan D CMet X

Proof

Step Hyp Ref Expression
1 iscbn.x X = BaseSet U
2 iscbn.8 D = IndMet U
3 1 2 iscbn U CBan U NrmCVec D CMet X
4 3 simprbi U CBan D CMet X