Metamath Proof Explorer


Theorem cbv1

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . See cbv1v with disjoint variable conditions, not depending on ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 3-Oct-2016) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbv1.1 x φ
cbv1.2 y φ
cbv1.3 φ y ψ
cbv1.4 φ x χ
cbv1.5 φ x = y ψ χ
Assertion cbv1 φ x ψ y χ

Proof

Step Hyp Ref Expression
1 cbv1.1 x φ
2 cbv1.2 y φ
3 cbv1.3 φ y ψ
4 cbv1.4 φ x χ
5 cbv1.5 φ x = y ψ χ
6 2 3 nfim1 y φ ψ
7 1 4 nfim1 x φ χ
8 5 com12 x = y φ ψ χ
9 8 a2d x = y φ ψ φ χ
10 6 7 9 cbv3 x φ ψ y φ χ
11 1 19.21 x φ ψ φ x ψ
12 2 19.21 y φ χ φ y χ
13 10 11 12 3imtr3i φ x ψ φ y χ
14 13 pm2.86i φ x ψ y χ