Metamath Proof Explorer


Theorem cbv2

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . See cbv2w with disjoint variable conditions, not depending on ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 3-Oct-2016) Format hypotheses to common style, avoid ax-10 . (Revised by Wolf Lammen, 10-Sep-2023) (New usage is discouraged.)

Ref Expression
Hypotheses cbv2.1 x φ
cbv2.2 y φ
cbv2.3 φ y ψ
cbv2.4 φ x χ
cbv2.5 φ x = y ψ χ
Assertion cbv2 φ x ψ y χ

Proof

Step Hyp Ref Expression
1 cbv2.1 x φ
2 cbv2.2 y φ
3 cbv2.3 φ y ψ
4 cbv2.4 φ x χ
5 cbv2.5 φ x = y ψ χ
6 biimp ψ χ ψ χ
7 5 6 syl6 φ x = y ψ χ
8 1 2 3 4 7 cbv1 φ x ψ y χ
9 equcomi y = x x = y
10 biimpr ψ χ χ ψ
11 9 5 10 syl56 φ y = x χ ψ
12 2 1 4 3 11 cbv1 φ y χ x ψ
13 8 12 impbid φ x ψ y χ