Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbv2w
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbv2 with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 5-Aug-1993) (Revised by Gino
Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbv2w.1
⊢ Ⅎ x φ
cbv2w.2
⊢ Ⅎ y φ
cbv2w.3
⊢ φ → Ⅎ y ψ
cbv2w.4
⊢ φ → Ⅎ x χ
cbv2w.5
⊢ φ → x = y → ψ ↔ χ
Assertion
cbv2w
⊢ φ → ∀ x ψ ↔ ∀ y χ
Proof
Step
Hyp
Ref
Expression
1
cbv2w.1
⊢ Ⅎ x φ
2
cbv2w.2
⊢ Ⅎ y φ
3
cbv2w.3
⊢ φ → Ⅎ y ψ
4
cbv2w.4
⊢ φ → Ⅎ x χ
5
cbv2w.5
⊢ φ → x = y → ψ ↔ χ
6
biimp
⊢ ψ ↔ χ → ψ → χ
7
5 6
syl6
⊢ φ → x = y → ψ → χ
8
1 2 3 4 7
cbv1v
⊢ φ → ∀ x ψ → ∀ y χ
9
equcomi
⊢ y = x → x = y
10
biimpr
⊢ ψ ↔ χ → χ → ψ
11
9 5 10
syl56
⊢ φ → y = x → χ → ψ
12
2 1 4 3 11
cbv1v
⊢ φ → ∀ y χ → ∀ x ψ
13
8 12
impbid
⊢ φ → ∀ x ψ ↔ ∀ y χ