Metamath Proof Explorer


Theorem cbv2w

Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbv2w.1 x φ
cbv2w.2 y φ
cbv2w.3 φ y ψ
cbv2w.4 φ x χ
cbv2w.5 φ x = y ψ χ
Assertion cbv2w φ x ψ y χ

Proof

Step Hyp Ref Expression
1 cbv2w.1 x φ
2 cbv2w.2 y φ
3 cbv2w.3 φ y ψ
4 cbv2w.4 φ x χ
5 cbv2w.5 φ x = y ψ χ
6 biimp ψ χ ψ χ
7 5 6 syl6 φ x = y ψ χ
8 1 2 3 4 7 cbv1v φ x ψ y χ
9 equcomi y = x x = y
10 biimpr ψ χ χ ψ
11 9 5 10 syl56 φ y = x χ ψ
12 2 1 4 3 11 cbv1v φ y χ x ψ
13 8 12 impbid φ x ψ y χ