Metamath Proof Explorer


Theorem cbv3

Description: Rule used to change bound variables, using implicit substitution, that does not use ax-c9 . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbv3v if possible. (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 12-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbv3.1 y φ
cbv3.2 x ψ
cbv3.3 x = y φ ψ
Assertion cbv3 x φ y ψ

Proof

Step Hyp Ref Expression
1 cbv3.1 y φ
2 cbv3.2 x ψ
3 cbv3.3 x = y φ ψ
4 1 nf5ri φ y φ
5 4 hbal x φ y x φ
6 2 3 spim x φ ψ
7 5 6 alrimih x φ y ψ