Metamath Proof Explorer


Theorem cbv3v

Description: Rule used to change bound variables, using implicit substitution. Version of cbv3 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses cbv3v.nf1 y φ
cbv3v.nf2 x ψ
cbv3v.1 x = y φ ψ
Assertion cbv3v x φ y ψ

Proof

Step Hyp Ref Expression
1 cbv3v.nf1 y φ
2 cbv3v.nf2 x ψ
3 cbv3v.1 x = y φ ψ
4 1 nf5ri φ y φ
5 4 hbal x φ y x φ
6 2 3 spimfv x φ ψ
7 5 6 alrimih x φ y ψ