Metamath Proof Explorer


Theorem cbvab

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Usage of the weaker cbvabw and cbvabv are preferred. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 16-Nov-2019) (New usage is discouraged.)

Ref Expression
Hypotheses cbvab.1 y φ
cbvab.2 x ψ
cbvab.3 x = y φ ψ
Assertion cbvab x | φ = y | ψ

Proof

Step Hyp Ref Expression
1 cbvab.1 y φ
2 cbvab.2 x ψ
3 cbvab.3 x = y φ ψ
4 1 sbco2 z y y x φ z x φ
5 2 3 sbie y x φ ψ
6 5 sbbii z y y x φ z y ψ
7 4 6 bitr3i z x φ z y ψ
8 df-clab z x | φ z x φ
9 df-clab z y | ψ z y ψ
10 7 8 9 3bitr4i z x | φ z y | ψ
11 10 eqriv x | φ = y | ψ