Metamath Proof Explorer


Theorem cbvabw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvabw.1 y φ
cbvabw.2 x ψ
cbvabw.3 x = y φ ψ
Assertion cbvabw x | φ = y | ψ

Proof

Step Hyp Ref Expression
1 cbvabw.1 y φ
2 cbvabw.2 x ψ
3 cbvabw.3 x = y φ ψ
4 1 2 3 sbievg z x φ z y ψ
5 df-clab z x | φ z x φ
6 df-clab z y | ψ z y ψ
7 4 5 6 3bitr4i z x | φ z y | ψ
8 7 eqriv x | φ = y | ψ