Metamath Proof Explorer


Theorem cbval

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out cbvalw , cbvalvw , cbvalv1 for versions requiring fewer axioms. (Contributed by NM, 13-May-1993) (Revised by Mario Carneiro, 3-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbval.1 y φ
cbval.2 x ψ
cbval.3 x = y φ ψ
Assertion cbval x φ y ψ

Proof

Step Hyp Ref Expression
1 cbval.1 y φ
2 cbval.2 x ψ
3 cbval.3 x = y φ ψ
4 3 biimpd x = y φ ψ
5 1 2 4 cbv3 x φ y ψ
6 3 biimprd x = y ψ φ
7 6 equcoms y = x ψ φ
8 2 1 7 cbv3 y ψ x φ
9 5 8 impbii x φ y ψ