Metamath Proof Explorer


Theorem cbval2

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbval2v if possible. (Contributed by NM, 22-Dec-2003) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-Sep-2023) (New usage is discouraged.)

Ref Expression
Hypotheses cbval2.1 z φ
cbval2.2 w φ
cbval2.3 x ψ
cbval2.4 y ψ
cbval2.5 x = z y = w φ ψ
Assertion cbval2 x y φ z w ψ

Proof

Step Hyp Ref Expression
1 cbval2.1 z φ
2 cbval2.2 w φ
3 cbval2.3 x ψ
4 cbval2.4 y ψ
5 cbval2.5 x = z y = w φ ψ
6 1 nfal z y φ
7 3 nfal x w ψ
8 nfv y x = z
9 nfv w x = z
10 2 a1i x = z w φ
11 4 a1i x = z y ψ
12 5 ex x = z y = w φ ψ
13 8 9 10 11 12 cbv2 x = z y φ w ψ
14 6 7 13 cbval x y φ z w ψ