Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbval2v
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbval2 with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 22-Dec-2003) (Revised by BJ , 16-Jun-2019) (Proof shortened by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbval2v.1
⊢ Ⅎ z φ
cbval2v.2
⊢ Ⅎ w φ
cbval2v.3
⊢ Ⅎ x ψ
cbval2v.4
⊢ Ⅎ y ψ
cbval2v.5
⊢ x = z ∧ y = w → φ ↔ ψ
Assertion
cbval2v
⊢ ∀ x ∀ y φ ↔ ∀ z ∀ w ψ
Proof
Step
Hyp
Ref
Expression
1
cbval2v.1
⊢ Ⅎ z φ
2
cbval2v.2
⊢ Ⅎ w φ
3
cbval2v.3
⊢ Ⅎ x ψ
4
cbval2v.4
⊢ Ⅎ y ψ
5
cbval2v.5
⊢ x = z ∧ y = w → φ ↔ ψ
6
1
nfal
⊢ Ⅎ z ∀ y φ
7
3
nfal
⊢ Ⅎ x ∀ w ψ
8
nfv
⊢ Ⅎ y x = z
9
nfv
⊢ Ⅎ w x = z
10
2
a1i
⊢ x = z → Ⅎ w φ
11
4
a1i
⊢ x = z → Ⅎ y ψ
12
5
ex
⊢ x = z → y = w → φ ↔ ψ
13
8 9 10 11 12
cbv2w
⊢ x = z → ∀ y φ ↔ ∀ w ψ
14
6 7 13
cbvalv1
⊢ ∀ x ∀ y φ ↔ ∀ z ∀ w ψ