Metamath Proof Explorer


Theorem cbval2v

Description: Rule used to change bound variables, using implicit substitution. Version of cbval2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 22-Dec-2003) (Revised by BJ, 16-Jun-2019) (Proof shortened by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbval2v.1 z φ
cbval2v.2 w φ
cbval2v.3 x ψ
cbval2v.4 y ψ
cbval2v.5 x = z y = w φ ψ
Assertion cbval2v x y φ z w ψ

Proof

Step Hyp Ref Expression
1 cbval2v.1 z φ
2 cbval2v.2 w φ
3 cbval2v.3 x ψ
4 cbval2v.4 y ψ
5 cbval2v.5 x = z y = w φ ψ
6 1 nfal z y φ
7 3 nfal x w ψ
8 nfv y x = z
9 nfv w x = z
10 2 a1i x = z w φ
11 4 a1i x = z y ψ
12 5 ex x = z y = w φ ψ
13 8 9 10 11 12 cbv2w x = z y φ w ψ
14 6 7 13 cbvalv1 x y φ z w ψ