Metamath Proof Explorer


Theorem cbval2vOLD

Description: Obsolete version of cbval2v as of 14-Jan-2024. (Contributed by BJ, 16-Jan-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbval2v.1 z φ
cbval2v.2 w φ
cbval2v.3 x ψ
cbval2v.4 y ψ
cbval2v.5 x = z y = w φ ψ
Assertion cbval2vOLD x y φ z w ψ

Proof

Step Hyp Ref Expression
1 cbval2v.1 z φ
2 cbval2v.2 w φ
3 cbval2v.3 x ψ
4 cbval2v.4 y ψ
5 cbval2v.5 x = z y = w φ ψ
6 1 nfal z y φ
7 3 nfal x w ψ
8 nfv w x = z
9 8 2 nfim w x = z φ
10 nfv y x = z
11 10 4 nfim y x = z ψ
12 5 expcom y = w x = z φ ψ
13 12 pm5.74d y = w x = z φ x = z ψ
14 9 11 13 cbvalv1 y x = z φ w x = z ψ
15 19.21v y x = z φ x = z y φ
16 19.21v w x = z ψ x = z w ψ
17 14 15 16 3bitr3i x = z y φ x = z w ψ
18 17 pm5.74ri x = z y φ w ψ
19 6 7 18 cbvalv1 x y φ z w ψ