Metamath Proof Explorer


Theorem cbvaliw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypotheses cbvaliw.1 x φ y x φ
cbvaliw.2 ¬ ψ x ¬ ψ
cbvaliw.3 x = y φ ψ
Assertion cbvaliw x φ y ψ

Proof

Step Hyp Ref Expression
1 cbvaliw.1 x φ y x φ
2 cbvaliw.2 ¬ ψ x ¬ ψ
3 cbvaliw.3 x = y φ ψ
4 2 3 spimw x φ ψ
5 1 4 alrimih x φ y ψ