Metamath Proof Explorer


Theorem cbvcsb

Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvcsbw when possible. (Contributed by Jeff Hankins, 13-Sep-2009) (Revised by Mario Carneiro, 11-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvcsb.1 _ y C
cbvcsb.2 _ x D
cbvcsb.3 x = y C = D
Assertion cbvcsb A / x C = A / y D

Proof

Step Hyp Ref Expression
1 cbvcsb.1 _ y C
2 cbvcsb.2 _ x D
3 cbvcsb.3 x = y C = D
4 1 nfcri y z C
5 2 nfcri x z D
6 3 eleq2d x = y z C z D
7 4 5 6 cbvsbc [˙A / x]˙ z C [˙A / y]˙ z D
8 7 abbii z | [˙A / x]˙ z C = z | [˙A / y]˙ z D
9 df-csb A / x C = z | [˙A / x]˙ z C
10 df-csb A / y D = z | [˙A / y]˙ z D
11 8 9 10 3eqtr4i A / x C = A / y D