Metamath Proof Explorer


Theorem cbvcsbw

Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Version of cbvcsb with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 13-Sep-2009) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvcsbw.1 _ y C
cbvcsbw.2 _ x D
cbvcsbw.3 x = y C = D
Assertion cbvcsbw A / x C = A / y D

Proof

Step Hyp Ref Expression
1 cbvcsbw.1 _ y C
2 cbvcsbw.2 _ x D
3 cbvcsbw.3 x = y C = D
4 1 nfcri y z C
5 2 nfcri x z D
6 3 eleq2d x = y z C z D
7 4 5 6 cbvsbcw [˙A / x]˙ z C [˙A / y]˙ z D
8 7 abbii z | [˙A / x]˙ z C = z | [˙A / y]˙ z D
9 df-csb A / x C = z | [˙A / x]˙ z C
10 df-csb A / y D = z | [˙A / y]˙ z D
11 8 9 10 3eqtr4i A / x C = A / y D