Metamath Proof Explorer


Theorem cbvdisj

Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses cbvdisj.1 _ y B
cbvdisj.2 _ x C
cbvdisj.3 x = y B = C
Assertion cbvdisj Disj x A B Disj y A C

Proof

Step Hyp Ref Expression
1 cbvdisj.1 _ y B
2 cbvdisj.2 _ x C
3 cbvdisj.3 x = y B = C
4 1 nfcri y z B
5 2 nfcri x z C
6 3 eleq2d x = y z B z C
7 4 5 6 cbvrmow * x A z B * y A z C
8 7 albii z * x A z B z * y A z C
9 df-disj Disj x A B z * x A z B
10 df-disj Disj y A C z * y A z C
11 8 9 10 3bitr4i Disj x A B Disj y A C