Metamath Proof Explorer


Theorem cbvdisjv

Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis cbvdisjv.1 x = y B = C
Assertion cbvdisjv Disj x A B Disj y A C

Proof

Step Hyp Ref Expression
1 cbvdisjv.1 x = y B = C
2 nfcv _ y B
3 nfcv _ x C
4 2 3 1 cbvdisj Disj x A B Disj y A C