Metamath Proof Explorer


Theorem cbveu

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbveuw , cbveuvw when possible. (Contributed by NM, 25-Nov-1994) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbveu.1 yφ
cbveu.2 xψ
cbveu.3 x=yφψ
Assertion cbveu ∃!xφ∃!yψ

Proof

Step Hyp Ref Expression
1 cbveu.1 yφ
2 cbveu.2 xψ
3 cbveu.3 x=yφψ
4 1 sb8eu ∃!xφ∃!yyxφ
5 2 3 sbie yxφψ
6 5 eubii ∃!yyxφ∃!yψ
7 4 6 bitri ∃!xφ∃!yψ