Metamath Proof Explorer


Theorem cbveuALT

Description: Alternative proof of cbveu . Since df-eu combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbveu.1 y φ
cbveu.2 x ψ
cbveu.3 x = y φ ψ
Assertion cbveuALT ∃! x φ ∃! y ψ

Proof

Step Hyp Ref Expression
1 cbveu.1 y φ
2 cbveu.2 x ψ
3 cbveu.3 x = y φ ψ
4 1 2 3 cbvex x φ y ψ
5 1 2 3 cbvmo * x φ * y ψ
6 4 5 anbi12i x φ * x φ y ψ * y ψ
7 df-eu ∃! x φ x φ * x φ
8 df-eu ∃! y ψ y ψ * y ψ
9 6 7 8 3bitr4i ∃! x φ ∃! y ψ