Metamath Proof Explorer


Theorem cbveuvw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbveuvw.1 x = y φ ψ
Assertion cbveuvw ∃! x φ ∃! y ψ

Proof

Step Hyp Ref Expression
1 cbveuvw.1 x = y φ ψ
2 1 cbvexvw x φ y ψ
3 1 cbvmovw * x φ * y ψ
4 2 3 anbi12i x φ * x φ y ψ * y ψ
5 df-eu ∃! x φ x φ * x φ
6 df-eu ∃! y ψ y ψ * y ψ
7 4 5 6 3bitr4i ∃! x φ ∃! y ψ