Metamath Proof Explorer


Theorem cbveuw

Description: Version of cbveu with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbveuw.1 y φ
cbveuw.2 x ψ
cbveuw.3 x = y φ ψ
Assertion cbveuw ∃! x φ ∃! y ψ

Proof

Step Hyp Ref Expression
1 cbveuw.1 y φ
2 cbveuw.2 x ψ
3 cbveuw.3 x = y φ ψ
4 1 2 3 cbvexv1 x φ y ψ
5 1 2 3 cbvmow * x φ * y ψ
6 4 5 anbi12i x φ * x φ y ψ * y ψ
7 df-eu ∃! x φ x φ * x φ
8 df-eu ∃! y ψ y ψ * y ψ
9 6 7 8 3bitr4i ∃! x φ ∃! y ψ