Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
cbveuw
Metamath Proof Explorer
Description: Version of cbveu with a disjoint variable condition, which does not
require ax-10 , ax-13 . (Contributed by NM , 25-Nov-1994) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbveuw.1
⊢ Ⅎ y φ
cbveuw.2
⊢ Ⅎ x ψ
cbveuw.3
⊢ x = y → φ ↔ ψ
Assertion
cbveuw
⊢ ∃! x φ ↔ ∃! y ψ
Proof
Step
Hyp
Ref
Expression
1
cbveuw.1
⊢ Ⅎ y φ
2
cbveuw.2
⊢ Ⅎ x ψ
3
cbveuw.3
⊢ x = y → φ ↔ ψ
4
1 2 3
cbvexv1
⊢ ∃ x φ ↔ ∃ y ψ
5
1 2 3
cbvmow
⊢ ∃ * x φ ↔ ∃ * y ψ
6
4 5
anbi12i
⊢ ∃ x φ ∧ ∃ * x φ ↔ ∃ y ψ ∧ ∃ * y ψ
7
df-eu
⊢ ∃! x φ ↔ ∃ x φ ∧ ∃ * x φ
8
df-eu
⊢ ∃! y ψ ↔ ∃ y ψ ∧ ∃ * y ψ
9
6 7 8
3bitr4i
⊢ ∃! x φ ↔ ∃! y ψ