Metamath Proof Explorer


Theorem cbveuwOLD

Description: Obsolete version of cbveuw as of 23-May-2024. (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbveuwOLD.1 y φ
cbveuwOLD.2 x ψ
cbveuwOLD.3 x = y φ ψ
Assertion cbveuwOLD ∃! x φ ∃! y ψ

Proof

Step Hyp Ref Expression
1 cbveuwOLD.1 y φ
2 cbveuwOLD.2 x ψ
3 cbveuwOLD.3 x = y φ ψ
4 1 sb8euv ∃! x φ ∃! y y x φ
5 2 3 sbiev y x φ ψ
6 5 eubii ∃! y y x φ ∃! y ψ
7 4 6 bitri ∃! x φ ∃! y ψ