Metamath Proof Explorer


Theorem cbvex

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out cbvexvw , cbvexv1 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993) (New usage is discouraged.)

Ref Expression
Hypotheses cbval.1 y φ
cbval.2 x ψ
cbval.3 x = y φ ψ
Assertion cbvex x φ y ψ

Proof

Step Hyp Ref Expression
1 cbval.1 y φ
2 cbval.2 x ψ
3 cbval.3 x = y φ ψ
4 1 nfn y ¬ φ
5 2 nfn x ¬ ψ
6 3 notbid x = y ¬ φ ¬ ψ
7 4 5 6 cbval x ¬ φ y ¬ ψ
8 alnex x ¬ φ ¬ x φ
9 alnex y ¬ ψ ¬ y ψ
10 7 8 9 3bitr3i ¬ x φ ¬ y ψ
11 10 con4bii x φ y ψ