Metamath Proof Explorer


Theorem cbvex4v

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex4vw if possible. (Contributed by NM, 26-Jul-1995) (New usage is discouraged.)

Ref Expression
Hypotheses cbvex4v.1 x = v y = u φ ψ
cbvex4v.2 z = f w = g ψ χ
Assertion cbvex4v x y z w φ v u f g χ

Proof

Step Hyp Ref Expression
1 cbvex4v.1 x = v y = u φ ψ
2 cbvex4v.2 z = f w = g ψ χ
3 1 2exbidv x = v y = u z w φ z w ψ
4 3 cbvex2vv x y z w φ v u z w ψ
5 2 cbvex2vv z w ψ f g χ
6 5 2exbii v u z w ψ v u f g χ
7 4 6 bitri x y z w φ v u f g χ