Metamath Proof Explorer


Theorem cbvex4vw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex4v with more disjoint variable conditions, which requires fewer axioms. (Contributed by NM, 26-Jul-1995) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvex4vw.1 x = v y = u φ ψ
cbvex4vw.2 z = f w = g ψ χ
Assertion cbvex4vw x y z w φ v u f g χ

Proof

Step Hyp Ref Expression
1 cbvex4vw.1 x = v y = u φ ψ
2 cbvex4vw.2 z = f w = g ψ χ
3 1 2exbidv x = v y = u z w φ z w ψ
4 3 cbvex2vw x y z w φ v u z w ψ
5 2 cbvex2vw z w ψ f g χ
6 5 2exbii v u z w ψ v u f g χ
7 4 6 bitri x y z w φ v u f g χ