Metamath Proof Explorer


Theorem cbvexdw

Description: Deduction used to change bound variables, using implicit substitution. Version of cbvexd with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 2-Jan-2002) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvaldw.1 y φ
cbvaldw.2 φ y ψ
cbvaldw.3 φ x = y ψ χ
Assertion cbvexdw φ x ψ y χ

Proof

Step Hyp Ref Expression
1 cbvaldw.1 y φ
2 cbvaldw.2 φ y ψ
3 cbvaldw.3 φ x = y ψ χ
4 2 nfnd φ y ¬ ψ
5 notbi ψ χ ¬ ψ ¬ χ
6 3 5 syl6ib φ x = y ¬ ψ ¬ χ
7 1 4 6 cbvaldw φ x ¬ ψ y ¬ χ
8 alnex x ¬ ψ ¬ x ψ
9 alnex y ¬ χ ¬ y χ
10 7 8 9 3bitr3g φ ¬ x ψ ¬ y χ
11 10 con4bid φ x ψ y χ