Metamath Proof Explorer


Theorem cbvexv1

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex with a disjoint variable condition, which does not require ax-13 . See cbvexvw for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv for another variant. (Contributed by NM, 21-Jun-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses cbvalv1.nf1 y φ
cbvalv1.nf2 x ψ
cbvalv1.1 x = y φ ψ
Assertion cbvexv1 x φ y ψ

Proof

Step Hyp Ref Expression
1 cbvalv1.nf1 y φ
2 cbvalv1.nf2 x ψ
3 cbvalv1.1 x = y φ ψ
4 1 nfn y ¬ φ
5 2 nfn x ¬ ψ
6 3 notbid x = y ¬ φ ¬ ψ
7 4 5 6 cbvalv1 x ¬ φ y ¬ ψ
8 alnex x ¬ φ ¬ x φ
9 alnex y ¬ ψ ¬ y ψ
10 7 8 9 3bitr3i ¬ x φ ¬ y ψ
11 10 con4bii x φ y ψ