Metamath Proof Explorer


Theorem cbviinv

Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009) Add disjoint variable condition to avoid ax-13 . See cbviinvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis cbviunv.1 x = y B = C
Assertion cbviinv x A B = y A C

Proof

Step Hyp Ref Expression
1 cbviunv.1 x = y B = C
2 nfcv _ y B
3 nfcv _ x C
4 2 3 1 cbviin x A B = y A C