Metamath Proof Explorer


Theorem cbviotavw

Description: Change bound variables in a description binder. Version of cbviotav with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbviotavw.1 x = y φ ψ
Assertion cbviotavw ι x | φ = ι y | ψ

Proof

Step Hyp Ref Expression
1 cbviotavw.1 x = y φ ψ
2 1 cbvabv x | φ = y | ψ
3 2 eqeq1i x | φ = z y | ψ = z
4 3 abbii z | x | φ = z = z | y | ψ = z
5 4 unieqi z | x | φ = z = z | y | ψ = z
6 df-iota ι x | φ = z | x | φ = z
7 df-iota ι y | ψ = z | y | ψ = z
8 5 6 7 3eqtr4i ι x | φ = ι y | ψ