Metamath Proof Explorer


Theorem cbviotaw

Description: Change bound variables in a description binder. Version of cbviota with a disjoint variable condition, which does not require ax-13 . (Contributed by Andrew Salmon, 1-Aug-2011) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses cbviotaw.1 x = y φ ψ
cbviotaw.2 y φ
cbviotaw.3 x ψ
Assertion cbviotaw ι x | φ = ι y | ψ

Proof

Step Hyp Ref Expression
1 cbviotaw.1 x = y φ ψ
2 cbviotaw.2 y φ
3 cbviotaw.3 x ψ
4 nfv z φ x = w
5 nfs1v x z x φ
6 nfv x z = w
7 5 6 nfbi x z x φ z = w
8 sbequ12 x = z φ z x φ
9 equequ1 x = z x = w z = w
10 8 9 bibi12d x = z φ x = w z x φ z = w
11 4 7 10 cbvalv1 x φ x = w z z x φ z = w
12 2 nfsbv y z x φ
13 nfv y z = w
14 12 13 nfbi y z x φ z = w
15 nfv z ψ y = w
16 3 1 sbhypf z = y z x φ ψ
17 equequ1 z = y z = w y = w
18 16 17 bibi12d z = y z x φ z = w ψ y = w
19 14 15 18 cbvalv1 z z x φ z = w y ψ y = w
20 11 19 bitri x φ x = w y ψ y = w
21 20 abbii w | x φ x = w = w | y ψ y = w
22 21 unieqi w | x φ x = w = w | y ψ y = w
23 dfiota2 ι x | φ = w | x φ x = w
24 dfiota2 ι y | ψ = w | y ψ y = w
25 22 23 24 3eqtr4i ι x | φ = ι y | ψ