Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
cbvitgv
Next ⟩
itgeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cbvitgv
Description:
Change bound variable in an integral.
(Contributed by
Mario Carneiro
, 28-Jun-2014)
Ref
Expression
Hypothesis
cbvitg.1
⊢
x
=
y
→
B
=
C
Assertion
cbvitgv
⊢
∫
A
B
d
x
=
∫
A
C
d
y
Proof
Step
Hyp
Ref
Expression
1
cbvitg.1
⊢
x
=
y
→
B
=
C
2
nfcv
⊢
Ⅎ
_
y
B
3
nfcv
⊢
Ⅎ
_
x
C
4
1
2
3
cbvitg
⊢
∫
A
B
d
x
=
∫
A
C
d
y