Metamath Proof Explorer


Theorem cbvitgv

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis cbvitg.1 x = y B = C
Assertion cbvitgv A B dx = A C dy

Proof

Step Hyp Ref Expression
1 cbvitg.1 x = y B = C
2 nfcv _ y B
3 nfcv _ x C
4 1 2 3 cbvitg A B dx = A C dy