Metamath Proof Explorer


Theorem cbviunf

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011)

Ref Expression
Hypotheses cbviunf.x _ x A
cbviunf.y _ y A
cbviunf.1 _ y B
cbviunf.2 _ x C
cbviunf.3 x = y B = C
Assertion cbviunf x A B = y A C

Proof

Step Hyp Ref Expression
1 cbviunf.x _ x A
2 cbviunf.y _ y A
3 cbviunf.1 _ y B
4 cbviunf.2 _ x C
5 cbviunf.3 x = y B = C
6 3 nfcri y z B
7 4 nfcri x z C
8 5 eleq2d x = y z B z C
9 1 2 6 7 8 cbvrexfw x A z B y A z C
10 9 abbii z | x A z B = z | y A z C
11 df-iun x A B = z | x A z B
12 df-iun y A C = z | y A z C
13 10 11 12 3eqtr4i x A B = y A C