Metamath Proof Explorer


Theorem cbviung

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 . See cbviun for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbviung.1 _ y B
cbviung.2 _ x C
cbviung.3 x = y B = C
Assertion cbviung x A B = y A C

Proof

Step Hyp Ref Expression
1 cbviung.1 _ y B
2 cbviung.2 _ x C
3 cbviung.3 x = y B = C
4 1 nfcri y z B
5 2 nfcri x z C
6 3 eleq2d x = y z B z C
7 4 5 6 cbvrex x A z B y A z C
8 7 abbii z | x A z B = z | y A z C
9 df-iun x A B = z | x A z B
10 df-iun y A C = z | y A z C
11 8 9 10 3eqtr4i x A B = y A C