Metamath Proof Explorer


Theorem cbviunv

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003) Add disjoint variable condition to avoid ax-13 . See cbviunvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis cbviunv.1 x = y B = C
Assertion cbviunv x A B = y A C

Proof

Step Hyp Ref Expression
1 cbviunv.1 x = y B = C
2 nfcv _ y B
3 nfcv _ x C
4 2 3 1 cbviun x A B = y A C