Metamath Proof Explorer


Theorem cbvixp

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses cbvixp.1 _ y B
cbvixp.2 _ x C
cbvixp.3 x = y B = C
Assertion cbvixp x A B = y A C

Proof

Step Hyp Ref Expression
1 cbvixp.1 _ y B
2 cbvixp.2 _ x C
3 cbvixp.3 x = y B = C
4 1 nfel2 y f x B
5 2 nfel2 x f y C
6 fveq2 x = y f x = f y
7 6 3 eleq12d x = y f x B f y C
8 4 5 7 cbvralw x A f x B y A f y C
9 8 anbi2i f Fn A x A f x B f Fn A y A f y C
10 9 abbii f | f Fn A x A f x B = f | f Fn A y A f y C
11 dfixp x A B = f | f Fn A x A f x B
12 dfixp y A C = f | f Fn A y A f y C
13 10 11 12 3eqtr4i x A B = y A C