Metamath Proof Explorer


Theorem cbvixpv

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis cbvixpv.1 x = y B = C
Assertion cbvixpv x A B = y A C

Proof

Step Hyp Ref Expression
1 cbvixpv.1 x = y B = C
2 nfcv _ y B
3 nfcv _ x C
4 2 3 1 cbvixp x A B = y A C