Metamath Proof Explorer


Theorem cbvixpv

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis cbvixpv.1 x = y B = C
Assertion cbvixpv x A B = y A C

Proof

Step Hyp Ref Expression
1 cbvixpv.1 x = y B = C
2 fveq2 x = y z x = z y
3 2 1 eleq12d x = y z x B z y C
4 3 cbvralvw x A z x B y A z y C
5 4 anbi2i z Fn A x A z x B z Fn A y A z y C
6 5 abbii z | z Fn A x A z x B = z | z Fn A y A z y C
7 dfixp x A B = z | z Fn A x A z x B
8 dfixp y A C = z | z Fn A y A z y C
9 6 7 8 3eqtr4i x A B = y A C