Metamath Proof Explorer


Theorem cbvmovw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvmo and cbvmow for versions with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Mar-1995) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvmovw.1 x = y φ ψ
Assertion cbvmovw * x φ * y ψ

Proof

Step Hyp Ref Expression
1 cbvmovw.1 x = y φ ψ
2 equequ1 x = y x = z y = z
3 1 2 imbi12d x = y φ x = z ψ y = z
4 3 cbvalvw x φ x = z y ψ y = z
5 4 exbii z x φ x = z z y ψ y = z
6 df-mo * x φ z x φ x = z
7 df-mo * y ψ z y ψ y = z
8 5 6 7 3bitr4i * x φ * y ψ