Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
cbvmow
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvmo with a disjoint variable condition, which does not
require ax-10 , ax-13 . (Contributed by NM , 9-Mar-1995) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbvmow.1
⊢ Ⅎ y φ
cbvmow.2
⊢ Ⅎ x ψ
cbvmow.3
⊢ x = y → φ ↔ ψ
Assertion
cbvmow
⊢ ∃ * x φ ↔ ∃ * y ψ
Proof
Step
Hyp
Ref
Expression
1
cbvmow.1
⊢ Ⅎ y φ
2
cbvmow.2
⊢ Ⅎ x ψ
3
cbvmow.3
⊢ x = y → φ ↔ ψ
4
nfv
⊢ Ⅎ y x = z
5
1 4
nfim
⊢ Ⅎ y φ → x = z
6
nfv
⊢ Ⅎ x y = z
7
2 6
nfim
⊢ Ⅎ x ψ → y = z
8
equequ1
⊢ x = y → x = z ↔ y = z
9
3 8
imbi12d
⊢ x = y → φ → x = z ↔ ψ → y = z
10
5 7 9
cbvalv1
⊢ ∀ x φ → x = z ↔ ∀ y ψ → y = z
11
10
exbii
⊢ ∃ z ∀ x φ → x = z ↔ ∃ z ∀ y ψ → y = z
12
df-mo
⊢ ∃ * x φ ↔ ∃ z ∀ x φ → x = z
13
df-mo
⊢ ∃ * y ψ ↔ ∃ z ∀ y ψ → y = z
14
11 12 13
3bitr4i
⊢ ∃ * x φ ↔ ∃ * y ψ