Metamath Proof Explorer


Theorem cbvmow

Description: Rule used to change bound variables, using implicit substitution. Version of cbvmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 9-Mar-1995) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvmow.1 y φ
cbvmow.2 x ψ
cbvmow.3 x = y φ ψ
Assertion cbvmow * x φ * y ψ

Proof

Step Hyp Ref Expression
1 cbvmow.1 y φ
2 cbvmow.2 x ψ
3 cbvmow.3 x = y φ ψ
4 nfv y x = z
5 1 4 nfim y φ x = z
6 nfv x y = z
7 2 6 nfim x ψ y = z
8 equequ1 x = y x = z y = z
9 3 8 imbi12d x = y φ x = z ψ y = z
10 5 7 9 cbvalv1 x φ x = z y ψ y = z
11 10 exbii z x φ x = z z y ψ y = z
12 df-mo * x φ z x φ x = z
13 df-mo * y ψ z y ψ y = z
14 11 12 13 3bitr4i * x φ * y ψ