Metamath Proof Explorer


Theorem cbvmpo

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013)

Ref Expression
Hypotheses cbvmpo.1 _ z C
cbvmpo.2 _ w C
cbvmpo.3 _ x D
cbvmpo.4 _ y D
cbvmpo.5 x = z y = w C = D
Assertion cbvmpo x A , y B C = z A , w B D

Proof

Step Hyp Ref Expression
1 cbvmpo.1 _ z C
2 cbvmpo.2 _ w C
3 cbvmpo.3 _ x D
4 cbvmpo.4 _ y D
5 cbvmpo.5 x = z y = w C = D
6 nfcv _ z B
7 nfcv _ x B
8 eqidd x = z B = B
9 6 7 1 2 3 4 8 5 cbvmpox x A , y B C = z A , w B D