Metamath Proof Explorer


Theorem cbvmpo1

Description: Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cbvmpo1.1 _ x B
cbvmpo1.2 _ z B
cbvmpo1.3 _ z C
cbvmpo1.4 _ x E
cbvmpo1.5 x = z C = E
Assertion cbvmpo1 x A , y B C = z A , y B E

Proof

Step Hyp Ref Expression
1 cbvmpo1.1 _ x B
2 cbvmpo1.2 _ z B
3 cbvmpo1.3 _ z C
4 cbvmpo1.4 _ x E
5 cbvmpo1.5 x = z C = E
6 nfv z x A
7 2 nfcri z y B
8 6 7 nfan z x A y B
9 3 nfeq2 z u = C
10 8 9 nfan z x A y B u = C
11 nfv x z A
12 1 nfcri x y B
13 11 12 nfan x z A y B
14 4 nfeq2 x u = E
15 13 14 nfan x z A y B u = E
16 eleq1w x = z x A z A
17 16 anbi1d x = z x A y B z A y B
18 5 eqeq2d x = z u = C u = E
19 17 18 anbi12d x = z x A y B u = C z A y B u = E
20 10 15 19 cbvoprab1 x y u | x A y B u = C = z y u | z A y B u = E
21 df-mpo x A , y B C = x y u | x A y B u = C
22 df-mpo z A , y B E = z y u | z A y B u = E
23 20 21 22 3eqtr4i x A , y B C = z A , y B E