Metamath Proof Explorer


Theorem cbvmpo2

Description: Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cbvmpo2.1 _ y A
cbvmpo2.2 _ w A
cbvmpo2.3 _ w C
cbvmpo2.4 _ y E
cbvmpo2.5 y = w C = E
Assertion cbvmpo2 x A , y B C = x A , w B E

Proof

Step Hyp Ref Expression
1 cbvmpo2.1 _ y A
2 cbvmpo2.2 _ w A
3 cbvmpo2.3 _ w C
4 cbvmpo2.4 _ y E
5 cbvmpo2.5 y = w C = E
6 2 nfcri w x A
7 nfcv _ w B
8 7 nfcri w y B
9 6 8 nfan w x A y B
10 3 nfeq2 w u = C
11 9 10 nfan w x A y B u = C
12 1 nfcri y x A
13 nfv y w B
14 12 13 nfan y x A w B
15 4 nfeq2 y u = E
16 14 15 nfan y x A w B u = E
17 eleq1w y = w y B w B
18 17 anbi2d y = w x A y B x A w B
19 5 eqeq2d y = w u = C u = E
20 18 19 anbi12d y = w x A y B u = C x A w B u = E
21 11 16 20 cbvoprab2 x y u | x A y B u = C = x w u | x A w B u = E
22 df-mpo x A , y B C = x y u | x A y B u = C
23 df-mpo x A , w B E = x w u | x A w B u = E
24 21 22 23 3eqtr4i x A , y B C = x A , w B E